Binomial Theorem

Short Answer Type Questions

Q. 1 Find the term independent of x, where $x \neq 0$,

in the expansion of
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$$
.

Thinking Process

The general term in the expansion of $(x-a)^n$ i.e., $T_{r+1} = {}^nC_r(x)^{n-r}(-a)^r$. For the term independent of x, put n - r = 0, then we get the value of r.

Sol. Given expansion is
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$$
.

Let T_{r+1} term is the general term.

Then,

÷

$$T_{r+1} = {}^{15}C_r \left(\frac{3x^2}{2}\right)^{15-r} \left(-\frac{1}{3x}\right)^r$$

= ${}^{15}C_r \; 3^{15-r} \; x^{30-2r} \; 2^{r-15} \; (-1)^r \cdot 3^{-r} \cdot x^{-r}$
= ${}^{15}C_r (-1)^r \; 3^{15-2r} 2^{r-15} x^{30-3r}$

For independent of x,

$$30 - 3r = 0$$

$$3r = 30 \implies r = 10$$

$$T_{r+1} = T_{10+1} = 11 \text{th term is independent of } x.$$

$$T_{10+1} = {}^{15}C_{10}(-1)^{10} \; 3^{15-20} \; 2^{10-15}$$

$$= {}^{15}C_{10} \; 3^{-5} \; 2^{-5}$$

$$= {}^{15}C_{10}(6)^{-5}$$

$$= {}^{15}C_{10}(6)^{-5}$$
$$= {}^{15}C_{10}\left(\frac{1}{6}\right)^{5}$$

Q. 2 If the term free from *x* in the expansion of $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$ is 405, then find

the value of *k*.

Sol. Given expansion is $\left(\sqrt{x} - \frac{k}{r^2}\right)^{10}$. Let T_{r+1} is the general term $T_{r+1} = {}^{10}C_r (\sqrt{x})^{10-r} \left(\frac{-k}{m^2}\right)^r$ Then, $= {}^{10}C_r(x)^{\frac{1}{2}(10-r)}(-k)^r \cdot x^{-2r}$ $= {}^{10}C_r x^{5-\frac{r}{2}} (-k)^r \cdot x^{-2r}$ $= {}^{10}C_r x^{5-\frac{r}{2}-2r} (-k)^r$ $= {}^{10}C_r x \frac{x^{10-5r}}{2} (-k)^r$ $\frac{10-5r}{2}=0$ For free from x, $10-5r=0 \implies r=2$ ⇒ Since, $T_{2+1} = T_3$ is free from x. $T_{2+1} = {}^{10}C_2(-k)^2 = 405$ $\frac{10 \times 9 \times 8!}{21 \times 8!} (-k)^2 = 405$ \Rightarrow $45k^2 = 405 \implies k^2 = \frac{405}{45} = 9$ \Rightarrow $k = \pm 3$ *.*..

Q. 3 Find the coefficient of x in the expansion of $(1 - 3x + 7x^2) (1 - x)^{16}$. Sol. Given, expansion = $(1 - 3x + 7x^2) (1 - x)^{16}$. = $(1 - 3x + 7x^2) ({}^{16}C_0 {}^{16} - {}^{16}C_1 {}^{15}x^1 + {}^{16}C_2 {}^{14}x^2 + ... + {}^{16}C_{16} {}^{x^{16}})$ = $(1 - 3x + 7x^2) (1 - 16x + 120x^2 + ...)$ ∴ Coefficient of x = -3 - 16 = -19

Q. 4 Find the term independent of *x* in the expansion of $\left(3x - \frac{2}{x^2}\right)^{15}$.

Thinking Process

The general term in the expansion of $(x-a)^n$ i.e., $T_{r+1} = {}^nC_r(x)^{n-r}(-a)^r$.

Sol. Given expansion is $\left(3x - \frac{2}{x^2}\right)^{15}$. Let T_{r+1} is the general term. \therefore $T_{r+1} = {}^{15}C_r (3x)^{15-r} \left(\frac{-2}{x^2}\right)^r = {}^{15}C_r (3x)^{15-r} (-2)^r x^{-2r}$ $= {}^{15}C_r 3^{15-r} x^{15-3r} (-2)^r$

For independent of x, $15 - 3r = 0 \implies r = 5$

Since, $T_{5+1} = T_6$ is independent of x.

$$T_{5+1} = {}^{15}C_5 \; 3^{15-5}(-2)^5$$
$$= -\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10!}{5 \times 4 \times 3 \times 2 \times 1 \times 10!} \cdot 3^{10} \cdot 2^5$$
$$= -3003 \cdot 3^{10} \cdot 2^5$$

 ${f Q}.~{f 5}$ Find the middle term (terms) in the expansion of

(i)
$$\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$$
 (ii) $\left(3x - \frac{x^3}{6}\right)^9$

• Thinking Process

In the expansion of $(a + b)^n$, if n is even, then this expansion has only one middle term i.e., $\left(\frac{n}{2} + 1\right)$ th term is the middle term and if n is odd, then this expansion has two middle terms i.e., $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+1}{2} + 1\right)$ th are two middle terms. **Sol.** (i) Given expansion is $\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$.

Here, the power of Binomial *i.e.*, n = 10 is even. Since, it has one middle term $\left(\frac{10}{2} + 1\right)$ th term *i.e.*, 6th term.

$$T_{6} = T_{5+1} = {}^{10}C_{5} \left(\frac{x}{a}\right)^{10-5} \left(\frac{-a}{x}\right)^{5}$$
$$= -{}^{10}C_{5} \left(\frac{x}{a}\right)^{5} \left(\frac{a}{x}\right)^{5}$$
$$= -\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2 \times 1} \left(\frac{x}{a}\right)^{5} \left(\frac{x}{a}\right)^{-5}$$
$$= -9 \times 4 \times 7 = -252$$
(ii) Given expansion is $\left(3x - \frac{x^{3}}{6}\right)^{9}$.

Here, n = 9

[odd]

Since, the Binomial expansion has two middle terms *i.e.*, $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+1}{2}+1\right)$ th *i.e.*, 5th term and 6th term.

$$T_5 = T_{(4+1)} = {}^9C_4 (3x)^{9-4} \left(-\frac{x^3}{6} \right)^4$$
$$= \frac{9 \times 8 \times 7 \times 6 \times 5!}{4 \times 3 \times 2 \times 1 \times 5!} \; 3^5 \; x^5 \; x^{12} \; 6^{-4}$$
$$= \frac{7 \times 6 \times 3 \times 3^1}{2^4} \; x^{17} = \frac{189}{8} \; x^{17}$$

$$T_{6} = T_{5+1} = {}^{9}C_{5}(3x)^{9-5} \left(-\frac{x^{3}}{6}\right)^{5}$$
$$= -\frac{9 \times 8 \times 7 \times 6 \times 5!}{5! \times 4 \times 3 \times 2 \times 1} \cdot 3^{4} \cdot x^{4} \cdot x^{15} \cdot 6^{-5}$$
$$= \frac{-21 \times 6}{3 \times 2^{5}} x^{19} = \frac{-21}{16} x^{19}$$

Q. 6 Find the coefficient of x^{15} in the expansion of $(x - x^2)^{10}$.

Sol. Given expansion is
$$(x - x^2)^{10}$$
.
Let the term T_{r+1} is the general term.
 \therefore $T_{r+1} = {}^{10}C_r x^{10-r} (-x^2)^r$
 $= (-1)^{r} {}^{10}C_r x^{10-r} \cdot x^{2r}$
 $= (-1)^{r^{10}}C_r x^{10+r}$
For the coefficient of x^{15} ,
 $10 + r = 15 \Rightarrow r = 5$
 $T_{5+1} = (-1)^{5-10}C_5 x^{15}$
 \therefore Coefficient of $x^{15} = -1 \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!}$

$$5 \times 4 \times 3 \times 2 \times 1 \times 5$$

= $-3 \times 2 \times 7 \times 6 = -252$

Q. 7 Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$.

Thinking Process

In this type of questions, first of all find the general terms, in the expansion $(x - y)^n$ using the formula $T_{r+1} = {}^nC_r x^{n-r} (-y)^r$ and then put n - r equal to the required power of x of which coefficient is to be find out.

Sol. Given expansion is
$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$
.

Let the term T_{r+1} contains the coefficient of $\frac{1}{x^{17}}$ *i.e.*, x^{-17} .

:..

:..

$$T_{r+1} = {}^{15}C_r (x^4)^{15-r} \left(-\frac{1}{x^3}\right)^r$$
$$= {}^{15}C_r x^{60-4r} (-1)^r x^{-3r}$$
$$= {}^{15}C_r x^{60-7r} (-1)^r$$

For the coefficient x^{-17} ,

$$\begin{array}{c} 60 - 7r = -17 \\ \hline 7r = 77 \Rightarrow r = 11 \\ \hline 7r = 77 \Rightarrow r = 11 \\ \hline 11_{11+1} = {}^{15}C_{11} x^{60-77} (-1)^{11} \\ \hline \\ \hline \\ \hline \\ \end{array}$$

$$\begin{array}{c} Coefficient of x^{-17} = \frac{-15 \times 14 \times 13 \times 12 \times 11!}{11! \times 4 \times 3 \times 2 \times 1} \\ \end{array}$$

$$= -15 \times 7 \times 13 = -1365$$

Q. 8 Find the sixth term of the expansion $(y^{1/2} + x^{1/3})^n$, if the Binomial coefficient of the third term from the end is 45.

Sol. Given expansion is $(y^{1/2} + x^{1/3})^n$.

$$T_6 = T_{5+1} = {}^n C_5 (y^{1/2})^{n-5} (x^{1/3})^5 \qquad \dots (i)$$

Now, given that the Binomial coefficient of the third term from the end is 45. We know that, Binomial coefficient of third term from the end = Binomial coefficient of third term from the begining = ${}^{n}C_{2}$

 ${}^{n}C_{2} = 45$ ÷ $\frac{n(n-1)(n-2)!}{2!(n-2)!} = 45$ ⇒ n(n-1) = 90 $n^2 - n - 90 = 0$ \Rightarrow \Rightarrow $n^2 - 10n + 9n - 90 = 0$ ⇒ n(n-10) + 9(n-10) = 0 \Rightarrow (n - 10)(n + 9) = 0⇒ (n + 9) = 0 or (n - 10) = 0 \Rightarrow n = 10 $[:: n \neq -9]$ *.*.. From Eq. (i), $T_6 = {}^{10}C_5 y^{5/2} x^{5/3} = 252 y^{5/2} \cdot x^{5/3}$

Q. 9 Find the value of r, if the coefficients of (2r + 4)th and (r - 2)th terms in the expansion of $(1 + x)^{18}$ are equal.

Thinking Process

Coefficient of (r + 1)th term in the expansion of $(1 + x)^n$ is nC_r . Use this formula to solve the above problem.

- **Sol.** Given expansion is $(1 + x)^{18}$. Now, (2r + 4)th term *i.e.*, $T_{2r + 3 + 1}$. \therefore $T_{2r + 3 + 1} = {}^{18}C_{2r + 3}(1)^{18 - 2r - 3}(x)^{2r + 3}$ $= {}^{18}C_{2r + 3} x^{2r + 3}$ Now, (r - 2)th term *i.e.*, $T_{r-3 + 1} = {}^{18}C_{r-3} x^{r-3}$ As, $T_{r-3 + 1} = {}^{18}C_{r-3}$ [: ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x + y = n$] \Rightarrow 2r + 3 + r - 3 = 18 \Rightarrow 3r = 18 \therefore r = 6
- **Q.** 10 If the coefficient of second, third and fourth terms in the expansion of $(1 + x)^{2n}$ are in AP, then show that $2n^2 9n + 7 = 0$.

Thinking Process

In the expansion of $(x + y)^n$, the coefficient of (r + 1)th term is nC_r . Use this formula to get the required coefficient. If a, b and c are in AP, then 2b = a + c.

Sol. Given expansion is $(1 + x)^{2n}$. Now, coefficient of 2nd term = ${}^{2n}C_1$ Coefficient of 3rd term = ${}^{2n}C_2$ Coefficient of 4th term = ${}^{2n}C_3$ Given that, ${}^{2n}C_1$, ${}^{2n}C_2$ and ${}^{2n}C_3$ are in AP. $2 \cdot {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$ Then, $2\left\lceil\frac{2n(2n-1)(2n-2)!}{2\times1\times(2n-2)!}\right\rceil = \frac{2n(2n-1)!}{(2n-1)!} + \frac{2n(2n-1)(2n-2)(2n-3)!}{3!(2n-3)!}$ \Rightarrow $n(2n-1) = n + \frac{n(2n-1)(2n-2)}{6}$ \Rightarrow $n(12n - 6) = n (6 + 4n^2 - 4n - 2n + 2)$ \Rightarrow $12n - 6 = (4n^2 - 6n + 8)$ \Rightarrow $6(2n-1) = 2(2n^2 - 3n + 4)$ ⇒ $3(2n-1) = 2n^2 - 3n + 4$ ⇒ $2n^2 - 3n + 4 - 6n + 3 = 0$ \Rightarrow $2n^2 - 9n + 7 = 0$ \Rightarrow

Q. 11 Find the coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$.

Sol. Given, expansion =
$$(1 + x + x^2 + x^3)^{11} = [(1 + x) + x^2(1 + x)]^{11}$$

= $[(1 + x)(1 + x^2)]^{11} = (1 + x)^{11} \cdot (1 + x^2)^{11}$

Now, above expansion becomes

$$= ({}^{11}C_0 + {}^{11}C_1x + {}^{11}C_2x^2 + {}^{11}C_3x^3 + {}^{11}C_4x^4 + \dots)({}^{11}C_0 + {}^{11}C_1x^2 + {}^{11}C_2x^4 + \dots)$$

= (1 + 11x + 55x^2 + 165x^3 + 330x^4 + \dots)(1 + 11x^2 + 55x^4 + \dots)
Coefficient of x^4 = 55 + 605 + 330 = 990

Long Answer Type Questions

Q. 12 If p is a real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^{\circ}$ is 1120, then find the value of *p*.

Sol. Given expansion is $\left(\frac{p}{2}+2\right)^{\circ}$.

Here, n = 8

:..

[even] Since, this Binomial expansion has only one middle term *i.e.*, $\left(\frac{8}{2} + 1\right)$ th = 5th term

$$T_5 = T_{4+1} = {}^8C_4 \left(\frac{p}{2}\right)^{8-4} \cdot 2^4$$

$$\Rightarrow \qquad 1120 = {}^8C_4 \ p^4 \cdot 2^{-4} \ 2^4$$

$$\Rightarrow \qquad 1120 = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 4 \times 3 \times 2 \times 1} p^4$$

$$\Rightarrow \qquad 1120 = 7 \times 2 \times 5 \times p^{4}$$

$$\Rightarrow \qquad p^{4} = \frac{1120}{70} = 16 \Rightarrow p^{4} = 2^{4}$$

$$\Rightarrow \qquad p^{2} = 4 \Rightarrow p = \pm 2$$

Q. 13 Show that the middle term in the expansion of $\left(x - \frac{1}{x}\right)^{2n}$ is

 $\frac{1 \times 3 \times 5 \times \ldots \times (2n-1)}{n!} \times (-2)^{n}.$ **Sol.** Given, expansion is $\left(x - \frac{1}{x}\right)^{2n}$. This Binomial expansion has even power. So, this has one middle term.

i.e.,
$$\begin{pmatrix} \frac{2n}{2} + 1 \end{pmatrix} \text{th term} = (n+1)\text{th term}$$

$$T_{n+1} = {}^{2n}C_n(x)^{2n-n} \left(-\frac{1}{x}\right)^n = {}^{2n}C_n x^n(-1)^n x^{-n}$$

$$= {}^{2n}C_n(-1)^n = (-1)^n \frac{(2n)!}{n!n!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \dots (2n-1) \cdot (2n)}{n!n!} (-1)^n$$

$$= \frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 2 \cdot 4 \cdot 6 \dots (2n)}{12 \cdot 3 \cdot \dots n(n!)} (-1)^n$$

$$= \frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 2^n (1 \cdot 2 \cdot 3 \dots n) (-1)^n}{(1 \cdot 2 \cdot 3 \dots n) (n!)}$$

$$= \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)]}{n!} (-2)^n$$
Hence proved.

Q. 14 Find *n* in the Binomial $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, if the ratio of 7th term from the

beginning to the 7th term from the end is $\frac{1}{6}$.

Sol. Here, the Binomial expansion is $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$. Now, 7th term from beginning $T_7 = T_{6+1} = {}^n C_6 (\sqrt[3]{2})^{n-6} \left(\frac{1}{\sqrt[3]{2}}\right)^6$...(i) and 7th term from end *i.e.*, T_7 from the beginning of $\left(\frac{1}{\sqrt[3]{3}} + \sqrt[3]{2}\right)^2$ $T_7 = {}^{n}C_6 \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6} (\sqrt[3]{2})^6$ i.e., ...(ii) $= (1)^{6}$

Given that,
$$\frac{{}^{n}C_{6}(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)}{{}^{n}C_{6}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}\left(\sqrt[3]{2}\right)^{6}} = \frac{1}{6} \implies \frac{2^{\frac{n-6}{3}} \cdot 3^{-6/3}}{3^{-\left(\frac{n-6}{3}\right)} \cdot 2^{-6/3}} = \frac{1}{6}$$
$$\implies \left(2^{\frac{n-6}{3}} \cdot 2^{\frac{-6}{3}}\right) \left(3^{\frac{-6}{3}} \cdot 3^{\frac{n-6}{3}}\right) = 6^{-1}$$

$$\Rightarrow \qquad \left(2^{\frac{n-6}{3}-\frac{6}{3}}\right) \cdot \left(3^{\frac{n-6}{3}-\frac{6}{3}}\right) = 6^{-1} \Rightarrow (2 \cdot 3)^{\frac{n}{3}-4} = 6^{-1}$$
$$\Rightarrow \qquad \frac{n}{3}-4 = -1 \Rightarrow \frac{n}{3} = 3$$
$$\therefore \qquad n = 9$$

Q. 15 In the expansion of $(x + a)^n$, if the sum of odd terms is denoted by *O* and the sum of even term by *E*. Then, prove that

(i) $0^2 - E^2 = (x^2 - a^2)^n$.

(ii)
$$40E = (x + a)^{2n} - (x - a)^{2n}$$
.

Sol. (i) Given expansion is $(x + a)^n$. $\therefore (x + a)^n = {^nC_0} x^n a^0 + {^nC_1} x^{n-1} a^1 + {^nC_2} x^{n-2} a^2 + {^nC_3} x^{n-3} a^3 + \dots + {^nC_n} a^n$ Now, sum of odd terms $O = {}^{n}C_{0}x^{n} + {}^{n}C_{2}x^{n-2}a^{2} + \dots$ i.e., and sum of even terms $E = {}^{n}C_{1}x^{n-1}a + {}^{n}C_{3}x^{n-3}a^{3} + \dots$ i.e., $(x+a)^n = O + E$ ÷ ...(i) $(x-a)^n = O - E$ Similarly, ...(ii) $(O + E) (O - E) = (x + a)^n (x - a)^n$ $O^2 - E^2 = (x^2 - a^2)^n$ [on multiplying Eqs. (i) and (ii)] *:*.. \Rightarrow (ii) $4OE = (O + E)^2 - (O - E)^2 = [(x + a)^n]^2 - [(x - a)^n]^2$ [from Eqs. (i) and (ii)] $=(x+a)^{2n}-(x-a)^{2n}$ Hence proved.

Q. 16 If x^p occurs in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2n}$, then prove that its 2n!

coefficient is
$$\frac{(4n-p)!}{(4n-p)!} \frac{(2n+p)!}{3!}$$

Sol. Given expansion is $\left(x^2 + \frac{1}{x}\right)^{2n}$.
Let x^p occur in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2n}$.
 $T_{r+1} = {}^{2n}C_r(x^2)^{2n-r}\left(\frac{1}{x}\right)^r$
 $= {}^{2n}C_rx^{4n-2r}x^{-r} = {}^{2n}C_rx^{4n-3r}$
Let $4n - 3r = p$
 \Rightarrow $3r = 4n - p \Rightarrow r = \frac{4n - p}{3}$
 \therefore Coefficient of $x^p = {}^{2n}C_r = \frac{(2n)!}{r!(2n-r)!} = \frac{(2n)!}{\left(\frac{4n-p}{3}\right)!\left(2n-\frac{4n-p}{3}\right)!}$
 $= \frac{(2n)!}{\left(\frac{4n-p}{3}\right)!\left(\frac{6n-4n+p}{3}\right)!} = \frac{(2n)!}{\left(\frac{4n-p}{3}\right)!\left(\frac{2n+p}{3}\right)!}$

Q. 17 Find the term independent of *x* in the expansion of

$$(1+x+2x^3)\left(\frac{3}{2}x^2-\frac{1}{3x}\right)^9$$

Sol. Given expansion is $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$. Now, consider $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ $T_{r+1} = {}^9C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r$ $= {}^9C_r \left(\frac{3}{2}\right)^{9-r} x^{18-2r} \left(-\frac{1}{3}\right)^r x^{-r} = {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r}$

Hence, the general term in the expansion of $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$

$$= {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{18-3r} + {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{19-3r} + 2 \cdot {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{21-3r}$$

For term independent of x, putting 18 - 3r = 0, 19 - 3r = 0 and 21 - 3r = 0, we get r = 6, r = 19/3, r = 7

Since, the possible value of r are 6 and 7. Hence, second term is not independent of x.

$$\therefore \text{ The term independent of } x \text{ is } {}^{9}C_{6}\frac{3}{2}^{9-6}\left(-\frac{1}{3}\right)^{6} + 2 \cdot {}^{9}C_{7}\frac{3}{2}^{9-7}\left(-\frac{1}{3}\right)^{7}$$
$$= \frac{9 \times 8 \times 7 \times 6!}{6! \times 3 \times 2} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}} - 2 \cdot \frac{9 \times 8 \times 7!}{7! \times 2 \times 1} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}}$$
$$= \frac{84}{8} \cdot \frac{1}{3^{3}} - \frac{36}{4} \cdot \frac{2}{3^{5}} = \frac{7}{18} - \frac{2}{27} = \frac{21-4}{54} = \frac{17}{54}$$

Objective Type Questions

Q. 18 The total number of terms in the expansion of $(x + a)^{100} + (x - a)^{100}$ after simplification is

(a) 50 (b) 202 (c) 51 (d) None of these

Sol. (c) Here, $(x + a)^{100} + (x - a)^{100}$

Total number of terms is 102 in the expansion of $(x + a)^{100} + (x - a)^{100}$ 50 terms of $(x + a)^{100}$ cancel out 50 terms of $(x - a)^{100}$. 51 terms of $(x + a)^{100}$ get added to the 51 terms of $(x - a)^{100}$.

Alternate Method

$$(x+a)^{100} + (x-a)^{100} = {}^{100}C_0 x^{100} + {}^{100}C_1 x^{99}a + \dots + {}^{100}C_{100} a^{100} + {}^{100}C_0 x^{100} - {}^{100}C_1 x^{99}a + \dots + {}^{100}C_{100} a^{100}$$
$$= 2 \left[\underbrace{[{}^{100}C_0 x^{100} + {}^{100}C_2 x^{98} a^2 + \dots + {}^{100}C_{100} a^{100}]}_{51 \text{ terms}} \right]$$

Q. 19 If the integers r > 1, n > 2 and coefficients of (3r)th and (r + 2)nd terms in the Binomial expansion of $(1 + x)^{2n}$ are equal, then

(a) $n = 2r$	(b) $n = 3r$
(c) $n = 2r + 1$	(d) None of these

• Thinking Process

In the expansion of $(x + y)^n$, the coefficient of (r + 1)th term is nC_r .

Sol. (*a*) Given that, r > 1, n > 2 and the coefficients of (3*r*)th and (r + 2)th term are equal in the expansion of $(1 + x)^{2n}$.

Then,	$T_{3r} = T_{3r-1+1} = {}^{2n}C_{3r-1} x^{3r-1}$	
and	$T_{r+2} = T_{r+1+1} = {}^{2n}C_{r+1} x^{r+1}$	
Given,	${}^{2n}C_{3r-1} = {}^{2n}C_{r+1}$	$[:: {}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x + y = n]$
\Rightarrow	3r - 1 + r + 1 = 2n	
\Rightarrow	$4r = 2n \implies n = \frac{4r}{2}$	
	n = 2r	

Q. 20 The two successive terms in the expansion of $(1 + x)^{24}$ whose coefficients are in the ratio 1 : 4 are

(a) 3rd and 4th	(b) 4th and 5th
(c) 5th and 6th	(d) 6th and 7th

Sol. (c) Let two successive terms in the expansion of $(1 + x)^{24}$ are (r + 1)th and (r + 2)th terms.

.:.	$T_{r+1} = {}^{24}C_r x^r$
and	$T_{r+2} = {}^{24}C_{r+1} x^{r+1}$
Given that,	$\frac{{}^{24}C_r}{{}^{24}C_{r+1}} = \frac{1}{4}$
⇒	$\frac{\frac{(24)!}{r!(24-r)!}}{\frac{(24)!}{(r+1)!(24-r-1)!}} = \frac{1}{4}$
\Rightarrow	$\frac{(r+1)r!(23-r)!}{r!(24-r)(23-r)!} = \frac{1}{4}$
\Rightarrow	$\frac{r+1}{24-r} = \frac{1}{4} \implies 4r + 4 = 24 - r$
\Rightarrow	$5r = 20 \implies r = 4$
.: .	$T_{4+1} = T_5$ and $T_{4+2} = T_6$

Hence, 5th and 6th terms.

Q. 21 The coefficient of x^n in the expansion of $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ are in the ratio

(a) 1 : 2 (b) 1 : 3 (c) 3 : 1 (d) 2 : 1

Sol. (d) :: Coefficient of x^n in the expansion of $(1 + x)^{2n} = {}^{2n}C_n$ and coefficient of x^n in the expansion of $(1 + x)^{2n-1} = {}^{2n-1}C_n$

÷

$$\frac{{}^{2n}C_n}{{}^{2n-1}C_n} = \frac{\frac{(2n)!}{n!n!}}{\frac{(2n-1)!}{n!(n-1)!}}$$
$$= \frac{(2n)!n!(n-1)!}{n!(n-1)!}$$
$$= \frac{2n(2n-1)!n!(n-1)!}{n!n(n-1)!(2n-1)!}$$
$$= \frac{2n}{n} = \frac{2}{n} = 2:1$$

Q. 22 If the coefficients of 2nd, 3rd and the 4th terms in the expansion of $(1 + x)^n$ are in AP, then the value of *n* is

(a) 2 (b) 7
(c) 11 (d) 14
Sol. (b) The expansion of
$$(1 + x)^n$$
 is ${}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + ... + {}^nC_nx^n$
 \therefore Coefficient of 2nd term = nC_1 ,
Coefficient of 3rd term = nC_2 ,
and coefficient of 4th term = nC_3 .
Given that, nC_1 , nC_2 and nC_3 are in AP.
 \therefore $2{}^nC_2 = {}^nC_1 + {}^nC_3$
 $\Rightarrow 2\left[\frac{(n)!}{(n-2)!2!}\right] = \frac{(n)!}{(n-1)!} + \frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}$
 $\Rightarrow 2\left[\frac{2 \cdot n(n-1)(n-2)!}{(n-2)!2!} = \frac{n(n-1)!}{(n-1)!} + \frac{n(n-1)(n-2)(n-3)!}{3!2 \cdot 1(n-3)!}\right]$
 $\Rightarrow n(n-1) = n + \frac{n(n-1)(n-2)}{6}$
 $\Rightarrow n^2 - 9n + 14 = 0$
 $\Rightarrow n^2 - 7n - 2n + 14 = 0$
 $\Rightarrow n(n-7) - 2(n-7) = 0$
 $\Rightarrow (n-7)(n-2) = 0$
 $\therefore n = 2 \text{ or } n = 7$

Q. 23 If A and B are coefficient of x^n in the expansions of $(1 + x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then $\frac{A}{B}$ equals to (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) <u>1</u> **Sol.** (b) Since, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is ${}^{2n}C_n$. $A = {}^{2n}C_n$ *.*.. Now, the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ is $2^{n-1}C_n$. $B = {}^{2n-1}C_n$ *.*.. $\frac{A}{B} = \frac{{}^{2n}C_n}{{}^{2n-1}C_n} = \frac{2}{1} = 2$ Now, Same as solution No. 21. **Q.** 24 If the middle term of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$, then the value of x is (a) $2n\pi + \frac{\pi}{6}$ (b) $n\pi + \frac{\pi}{6}$ (c) $n\pi + (-1)^n \frac{\pi}{6}$ (d) $n\pi + (-1)^n \frac{\pi}{3}$ **Sol.** (c) Given expansion is $\left(\frac{1}{x} + x \sin x\right)^{10}$. Since, n = 10 is even, so this expansion has only one middle term *i.e.*, 6th term. $T_6 = T_{5+1} = {}^{10}C_5 \left(\frac{1}{r}\right)^{10-5} (x \sin x)^5$ *.*.. $\frac{63}{8} = {}^{10}C_5 x {}^{-5}x {}^{5}\sin^5 x$ \Rightarrow $\frac{63}{8} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5!} \sin^5 x$ $\frac{63}{8} = 2 \cdot 9 \cdot 2 \cdot 7 \cdot \sin^5 x$ \Rightarrow \Rightarrow $\sin^5 x = \frac{1}{32}$ \Rightarrow $\sin^5 x = \left(\frac{1}{2}\right)^5$ \Rightarrow $\sin x = \frac{1}{2}$ ⇒ $x = n\pi + (-1)^n \pi / 6$ *:*..

Fillers

♦ Thinking Process
In the expansion of (1 + x)ⁿ, the largest coefficient is
$${}^{n}C_{n/2}$$
 (when n is even).
Sol. Largest coefficient in the expansion of $(1 + x)^{10} = {}^{30}C_{30/2} = {}^{30}C_{15}$
Q. 26 The number of terms in the expansion of $(x + y + z)^n$
Sol. Given expansion is $(x + y + z)^n = [x + (y + z)]^n$.
 $[x + (y + z)]^n = {}^nC_0x^n + {}^nC_1x^{n-1}(y + z)$
 $+ {}^nC_2x^{n-2}(y + z)^2 + ... + {}^nC_n(y + z)^n$
. Number of terms = $1 + 2 + 3 + ... + n + (n + 1)$
 $= (n + 1)(n + 2)$
Q. 27 In the expansion of $\left(x^2 - \frac{1}{x^2}\right)^{16}$, the value of constant term is
Sol. Let constant be T_{r+1} .
...
 $T_{r+1} = {}^{16}C_r(x^2)^{16-r}\left(-\frac{1}{x^2}\right)^r$
For constant term, $32 - 4r = 0 \Rightarrow r = 8$
...
 $T_{s+1} = {}^{16}C_8$
Q. 28 If the seventh term from the beginning and the end in the expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$ are equal, then *n* equals to
Sol. Given expansions is $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$.
...
 $T_7 = T_{6+1} = {}^nC_6(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^6$
...(i)
Since, T_7 from end is same as the T_7 from beginning of $\left(\frac{1}{\sqrt[3]{3}} + \sqrt[3]{2}\right)^n$.
Then,
 $T_7 = C_6\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^6$
...(ii)
Given that,
 ${}^nC_6(x)^{-6/3} = {}^nC_6(x)^{-6/3} - {}^{2}C^{1/3}$
 \Rightarrow
 $n-12 = 0 \Rightarrow n = 12$

Q. 25 The largest coefficient in the expansion of $(1 + x)^{30}$ is

Q. 29 The coefficient of $a^{-6}b^4$ in the expansion of $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$ is

Thinking Process

In the expansion of $(x-a)^n$, $T_{r+1} = {}^nC_r x^{n-r}(-a)^r$

Sol. Given expansion is $\left(\frac{1}{a} - \frac{2b}{3}\right)^{10}$. Let T_{r+1} has the coefficient of $a^{-6}b^4$.

> $T_{r+1} = {}^{10}C_r \left(\frac{1}{a}\right)^{10-r} \left(-\frac{2b}{3}\right)^r$ For coefficient of $a^{-6}b^4$, $10-r=6 \Rightarrow r=4$ Coefficient of $a^{-6}b^4 = {}^{10}C_4(-2/3)^4$ $\therefore \qquad \qquad = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6! \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^4}{3^4} = \frac{1120}{27}$

Q. 30 Middle term in the expansion of $(a^3 + ba)^{28}$ is

Sol. Given expansion is $(a^3 + ba)^{28}$. \therefore n = 28 [even] \therefore Middle term = $\left(\frac{28}{2} + 1\right)$ th term = 15th term \therefore $T_{15} = T_{14+1}$ $= {}^{28}C_{14}(a^3)^{28-14}(ba)^{14}$ $= {}^{28}C_{14} a^{42} b^{14} a^{14}$ $= {}^{28}C_{14} a^{56} b^{14}$

Q. 31 The ratio of the coefficients of x^p and x^q in the expansion of $(1 + x)^{p+q}$ is

Sol. Given expansion is $(1 + x)^{p+q}$. \therefore Coefficient of $x^p = {}^{p+q}C_p$ and coefficient of $x^q = {}^{p+q}C_q$ \therefore $\frac{{}^{p+q}C_p}{{}^{p+q}C_q} = {}^{p+q}C_p}{{}^{p+q}C_p} = 1:1$

Q. 32 The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ is

Sol. Given expansion is $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$. Let the constant term be T_{r+1} . Then,

$$T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-r} \left(\frac{3}{2x^2}\right)^r$$

= ${}^{10}C_r \cdot x^{\frac{10-r}{2}} \cdot 3^{\frac{-10+r}{2}} \cdot 3^r \cdot 2^{-r} \cdot x^{-2r}$
= ${}^{10}C_r x^{\frac{10-5r}{2}} 3^{\frac{-10+3r}{2}} 2^{-r}$

For constant term, $10 - 5r = 0 \Rightarrow r = 2$ Hence, third term is independent of *x*.

Q. 33 If 25¹⁵ is divided by 13, then the remainder is Sol. Let $25^{15} = (26 - 1)^{15}$ $= {}^{15}C_0 \ 26^{15} - {}^{15}C_1 26^{14} + \dots - {}^{15}C_{15}$ $= {}^{15}C_0 26^{15} - {}^{15}C_1 26^{14} + \dots - 1 - 13 + 13$ $= {}^{15}C_0 \ 26^{15} - {}^{15}C_1 26^{14} + \dots - 13 + 12$

It is clear that, when 25¹⁵ is divided by 13, then remainder will be 12.

True/False

Q. 34 The sum of the series $\sum_{r=0}^{10} {}^{20}C_r$ is $2^{19} + \frac{{}^{20}C_{10}}{2}$.

Sol. False

Given series

$$= \sum_{r=0}^{10} {}^{20}C_r = {}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{10}$$

= ${}^{20}C_0 + {}^{20}C_1 + \dots + {}^{20}C_{10} + {}^{20}C_{11} + \dots {}^{20}C_{20} - ({}^{20}C_{11} + \dots + {}^{20}C_{20})$
= ${}^{2^{20}} - ({}^{20}C_{11} + \dots + {}^{2^{20}}C_{20})$

Hence, the given statement is false.

Q. 35 The expression $7^9 + 9^7$ is divisible by 64.

Sol. True

Given expression = $7^9 + 9^7 = (1 + 8)^7 - (1 - 8)^9$ = $({}^7C_0 + {}^7C_18 + {}^7C_28^2 + \dots + {}^7C_78^7) - ({}^9C_0 - {}^9C_18 + {}^9C_28^2 \dots - {}^9C_98^9)$ = $(1 + 7 \times 8 + 21 \times 8^2 + \dots) - (1 - 9 \times 8 + 36 \times 8^2 + \dots - 8^9)$ = $(7 \times 8 + 9 \times 8) + (21 \times 8^2 - 36 \times 8^2) + \dots$ = $2 \times 64 + (21 - 36)64 + \dots$ which is divisible by 64. Hence, the statement is true.

Q. 36 The number of terms in the expansion of $[(2x + y^3)^4]^7$ is 8.

Sol. False

Given expansion is $[(2x + y^3)^4]^7 = (2x + y^3)^{28}$. Since, this expansion has 29 terms. So, the given statement is false.

Q. 37 The sum of coefficients of the two middle terms in the expansion of $(1+x)^{2n-1}$ is equal to ${}^{2n-1}C_n$.

Sol. False

Here, the Binomial expansion is $(1 + x)^{2n-1}$. Since, this expansion has two middle term *i.e.*, $\left(\frac{2n-1+1}{2}\right)$ th term and $\left(\frac{2n-1+1}{2}+1\right)$ th term *i.e.*, *n*th term and (n + 1)th term. \therefore Coefficient of *n*th term = ${}^{2n-1}C_{n-1}$ Coefficient of (n + 1)th term = ${}^{2n-1}C_n$ Sum of coefficients = ${}^{2n-1}C_{n-1} + {}^{2n-1}C_n$ $= {}^{2n-1+1}C_n = {}^{2n}C_n$ $[\because {}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r]$

Q. 38 The last two digits of the numbers 3⁴⁰⁰ are 01.

Sol. True

Given that, $3^{400} = 9^{200} = (10 - 1)^{200}$ $\Rightarrow \qquad (10 - 1)^{200} = {}^{200}C_0 10^{200} - {}^{200}C_1 10^{199} + \dots - {}^{200}C_{199} 10^1 + {}^{200}C_{200} 1^{200}$ $\Rightarrow \qquad (10 - 1)^{200} = 10^{200} - 200 \times 10^{199} + \dots - 10 \times 200 + 1$ So it is clear that the last two digits are 01

So, it is clear that the last two digits are 01.

Q. 39 If the expansion of $\left(x - \frac{1}{x^2}\right)^{2n}$ contains a term independent of x, then n is a multiple of 2.

Sol. False

Given Binomial expansion is $\left(x - \frac{1}{x^2}\right)^{2n}$.

Let T_{r+1} term is independent of x.

Then,

$$T_{r+1} = {}^{2n}C_r(x)^{2n-r} \left(-\frac{1}{x^2}\right)^r$$

= ${}^{2n}C_r x^{2n-r}(-1)^r x^{-2r} = {}^{2n}C_r x^{2n-3r}(-1)^r$

For independent of x,

$$2n - 3r = 0$$
$$r = \frac{2n}{3}$$

which is not a integer.

So, the given expansion is not possible.

Q. 40 The number of terms in the expansion of $(a + b)^n$, where $n \in N$, is one less than the power *n*.

Sol. False

:..

We know that, the number of terms in the expansion of $(a + b)^n$, where $n \in N$, is one more than the power *n*.