Inverse Trigonometric Functions

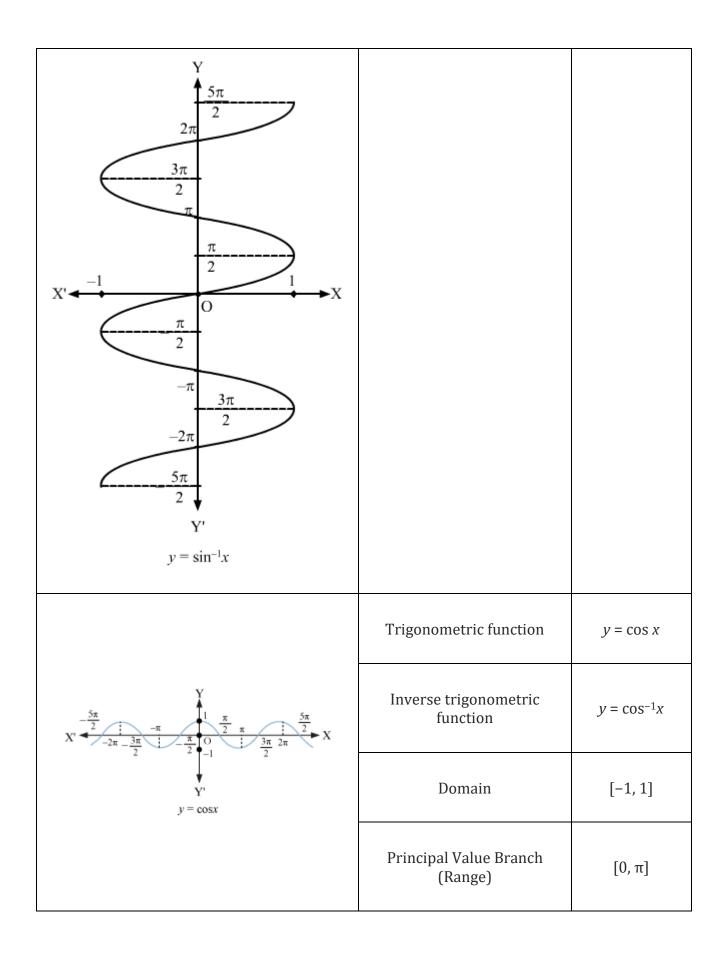
Inverse Trigonometric Functions

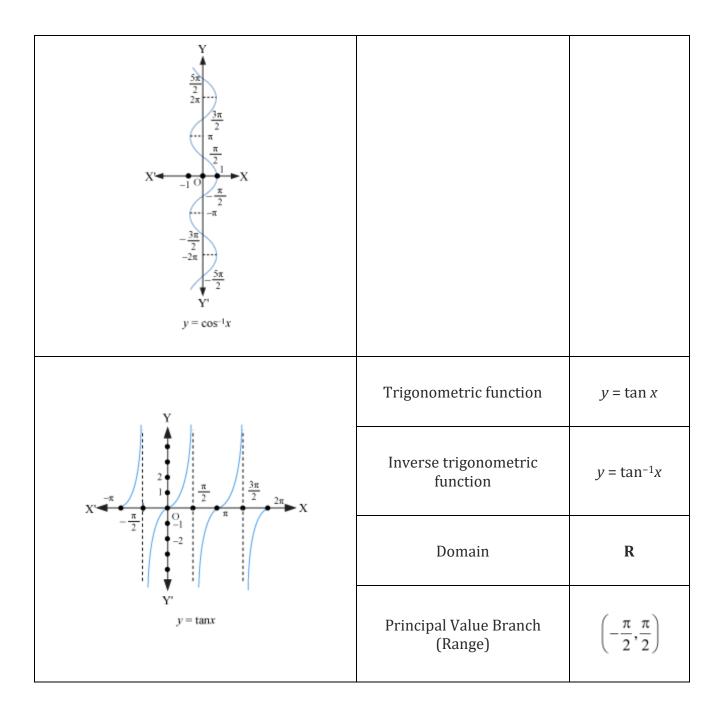
• Trigonometric functions are not one-one and onto in their usual natural domain. Hence, they are not invertible.

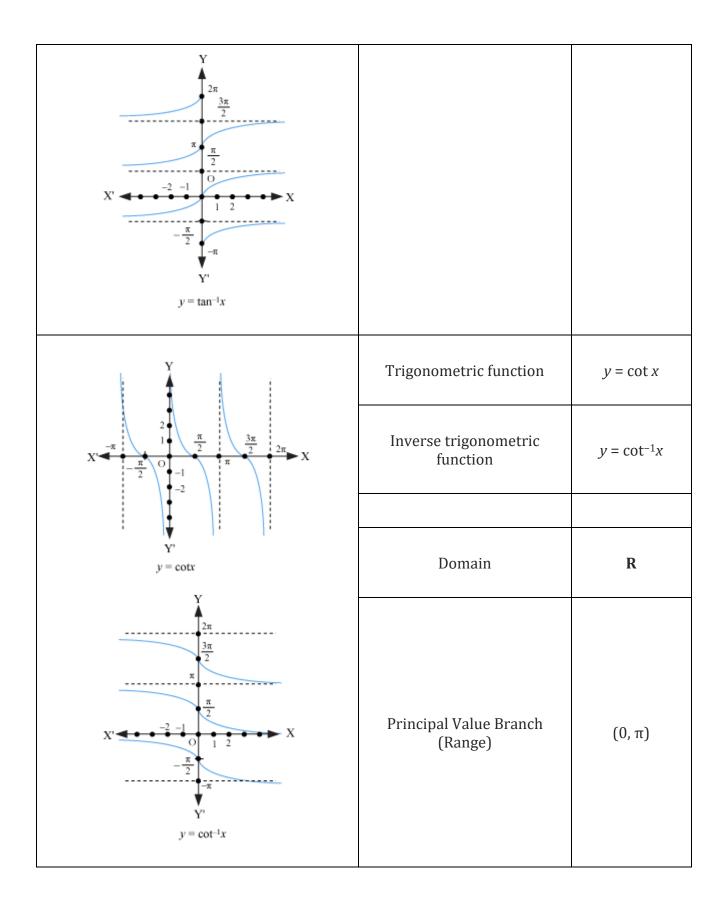
They can be made one-one and onto (i.e., invertible) by restricting their domain. In this case, the

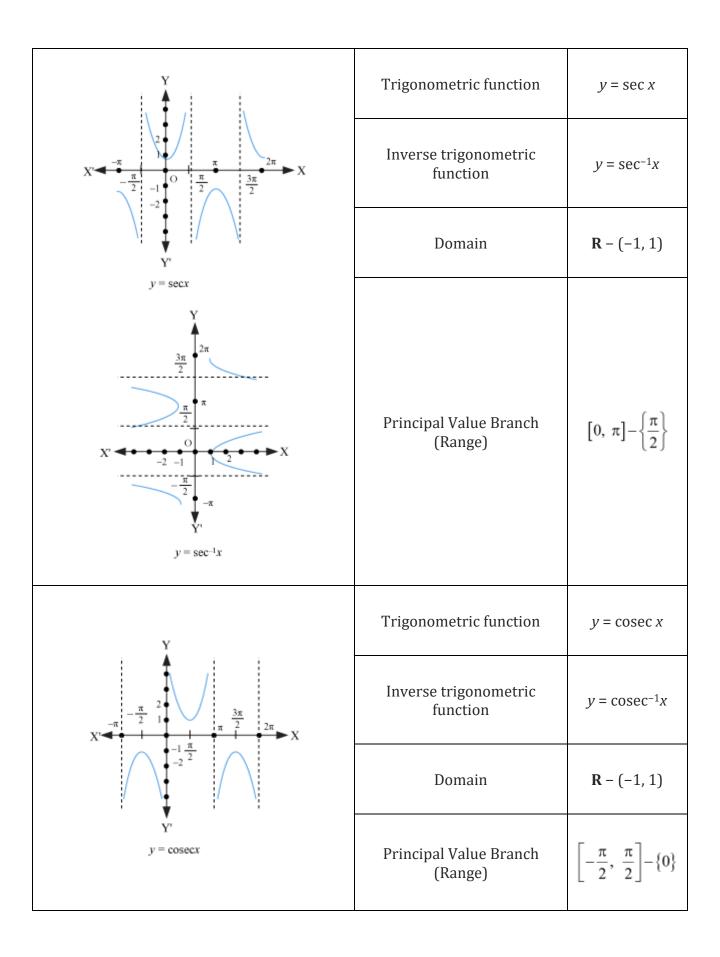
- Range of the inverse of trigonometric function is the proper subset of the domain of that trigonometric function.
- The branch of the inverse trigonometric function with the restricted range is called the Principal Value Branch.
- There are 6 inverse trigonometric functions. They can be described as

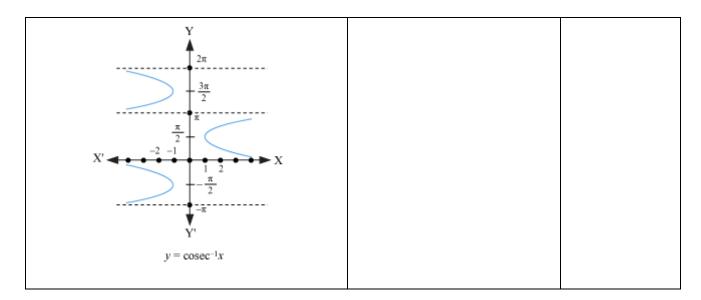
$X' \xrightarrow{-\frac{5\pi}{2}} -\frac{\pi}{2} \xrightarrow{-\frac{\pi}{2}} 0 \xrightarrow{\frac{\pi}{2}} \frac{3\pi}{2} \xrightarrow{2\pi} \frac{5\pi}{2} X$ $Y' \xrightarrow{Y'} y = \text{sinx}$	Trigonometric function	$y = \sin x$
	Inverse trigonometric function	$y = \sin^{-1}x$
	Domain	[-1, 1]
	Principal Value Branch (Range)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$











Example 1

Find the principal value of
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Solution:

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$

Accordingly, $\cos y = \frac{\sqrt{3}}{2}$

We know that the range of principal value branch of \cos^{-1} is $[0, \pi]$.

$$\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right), \text{ where } \frac{\pi}{6} \in [0, \pi]$$

Thus, the principal value of
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

Example 2

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + 3\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}(1)$$

Find the value of

Solution:

Let
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$

Accordingly, $\sin y = \frac{\sqrt{3}}{2}$

The range of the principal value branch of $\sin^{-1} is \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$. $\sin y = \frac{\sqrt{3}}{2} = \sin\left(\frac{\pi}{3}\right)$, where $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\therefore \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$...(1) Let $\cos^{-1}\left(\frac{1}{2}\right) = u$. Accordingly, $\cos u = \frac{1}{2}$

The range of the principal value branch of \cos^{-1} is $[0, \pi]$.

$$\cos u = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right), \text{ where } \frac{\pi}{3} \in [0, \pi]$$
$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \qquad \dots (2)$$

Let $\tan^{-1}(1) = v$. Accordingly, $\tan v = 1$.

The range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)_{-1}$.

$$\tan v = 1 = \tan\left(\frac{\pi}{4}\right), \text{ where } \frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$\therefore \tan^{-1}(1) = \frac{\pi}{4} \qquad \dots(3)$$

From (1), (2) and (3), we obtain

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + 3\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}(1)$$
$$= \frac{\pi}{3} + 3 \cdot \frac{\pi}{3} + \frac{\pi}{4}$$
$$= \frac{4\pi + 12\pi + 3\pi}{12}$$
$$= \frac{19\pi}{12}$$

Properties of Inverse Trigonometric Functions

- **Properties of sin**⁻¹*x*
- $y = \sin^{-1} x \Rightarrow x = \sin y$
- $x = \sin y \Rightarrow y = \sin^{-1} x$
- $\sin(\sin^{-1}x) = x$
- $\sin^{-1}(\sin x) = x$

$$\sin^{-1}\left(\frac{1}{x}\right) = \cos \sec^{-1}x$$

- $\sin^{-1}(-x) = -\sin^{-1}x$
- Properties of cos⁻¹x.
- $y = \cos^{-1} x \Rightarrow x = \cos y$
- $x = \cos y \Rightarrow y = \cos^{-1} x$
- $\cos(\cos^{-1} x) = x$
- $\cos^{-1}(\cos x) = x$

$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x$$

•

- $\cos^{-1}(-x) = \pi \cos^{-1}x$
- Properties of tan⁻¹x

- $x = \tan y \Rightarrow y = \tan^{-1} x$
- $\tan^{-1}(\tan x) = x$
- $\tan(\tan^{-1} x) = x$

$$\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$$

- $\tan^{-1}(-x) = -\tan^{-1}x$
- **Properties of cot**⁻¹*x*.

$$\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$$

- $\cot^{-1}(-x) = \pi \cot^{-1}x$
- **Properties of cosec**⁻¹*x*.

$$\cos \sec^{-1}\left(\frac{1}{x}\right) = \sin^{-1}x$$

•

- $\csc^{-1}(-x) = -\csc^{-1}x$
- Properties of sec⁻¹x.

•
$$\sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}x$$

• $\sec^{-1}(-x) = \pi - \sec^{-1}x$

• $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

$$\cos \sec^{-1} x + \sec^{-1} x = \frac{\pi}{2}$$

 $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$

- To understand the proof of the formula $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$,
- •

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy < 1$$

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy > -1$$

$$\tan x + \tan y = \tan \left(\frac{1-xy}{1-xy}\right), xy > -1$$

To understand the proof of the formula of $\tan^{-1} x + \tan^{-1} y$, •

$$2 \tan^{-1} x = \begin{cases} \sin^{-1} \left(\frac{2x}{1+x^2} \right), |x| \le 1 \\ \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right), x \ge 1 \\ \tan^{-1} \left(\frac{2x}{1-x^2} \right), -1 < x < 1 \end{cases}$$

$$2\tan^{-1} x = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$

To understand the proof of the formula •

•
$$2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2} \right), -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$
•
$$2\cos^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2} \right), \frac{1}{\sqrt{2}} \le x \le 1$$

Solved Examples

Example 1

•

Solve the equation
$$(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$$
.

Solution:

$$(\tan^{-1} x)^{2} + (\cot^{-1} x)^{2} = \frac{5\pi^{2}}{8}$$

$$\Rightarrow (\tan^{-1} x + \cot^{-1} x)^{2} - 2\tan^{-1} x \cot^{-1} x = \frac{5\pi^{2}}{8} \qquad \left[a^{2} + b^{2} = (a + b)^{2} - 2ab\right]$$

$$\Rightarrow \left(\frac{\pi}{2}\right)^{2} - 2\tan^{-1} x \cot^{-1} x = \frac{5\pi^{2}}{8} \qquad \left[\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}\right]$$

$$\Rightarrow 2\tan^{-1} x \cot^{-1} x = \frac{\pi^{2}}{4} - \frac{5\pi^{2}}{8}$$

$$\Rightarrow 2 \tan^{-1} x \cot^{-1} x = -\frac{3\pi^2}{8}$$
$$\Rightarrow 2 \tan^{-1} x \left(\frac{\pi}{2} - \tan^{-1} x\right) = -\frac{3\pi^2}{8}$$
$$\Rightarrow \pi \tan^{-1} x - 2\left(\tan^{-1} x\right)^2 = -\frac{3\pi^2}{8}$$

Let $\tan^{-1} x = y$

-

$$\Rightarrow 8\pi y - 16y^{2} = -3\pi^{2}$$

$$\Rightarrow 16y^{2} - 8\pi y - 3\pi^{2} = 0$$

$$\Rightarrow y = \frac{8\pi \pm \sqrt{64\pi^{2} + 192\pi^{2}}}{32} = \frac{8\pi \pm 16\pi}{32}$$

$$\Rightarrow y = \frac{\pi \pm 2\pi}{4}$$

$$\Rightarrow y = -\frac{\pi}{4} \text{ and } \frac{3\pi}{4}$$

$$\Rightarrow \tan^{-1} x = -\frac{\pi}{4} \text{ and } \tan^{-1} x = \frac{3\pi}{4}$$

The principal value branch of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)_{-1}$.

$$\therefore \tan^{-1} x = -\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$\Rightarrow x = \tan\left(-\frac{\pi}{4}\right)$$
$$\Rightarrow x = -1$$

Example 2

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x, x > 0, \text{ then prove that } x = \pm \frac{1}{\sqrt{3}}.$$

Solution:

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$$

$$\Rightarrow 2\tan^{-1}\left(\frac{1-x}{1+x}\right) = \tan^{-1}x$$

$$\Rightarrow \tan^{-1}\left\{\frac{2\left(\frac{1-x}{1+x}\right)}{1-\left(\frac{1-x}{1+x}\right)^2}\right\} = \tan^{-1}x$$

$$\Rightarrow \frac{2\left(1-x^2\right)}{4x} = x$$

$$\Rightarrow 1-x^2 = 2x^2$$

$$\Rightarrow x^2 = \frac{1}{3}$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$