
Relations and Functions 
 
Types of Relations 

Equivalence Relation 
 

• A relation R in a set A is called reflexive if (a, a) ∈ R for every a ∈ A. 

• For example: A relation R in set A  defined by R = {sin a = sin b; a, b ∈ A} is a reflexive 

relation since . 

• A relation R in a set A is called symmetric if (a1, a2) ∈ R implies that (a2, a1) ∈ R, for all a1, a2 ∈ A. 

• For example: A relation in the set defined by R = {sin a = sin b; a, b ∈ A} is a symmetric 
relation. Since for a, b ∈ A, sin a = sin b implies sin b = sin a. So, (a, b) ∈ R ⇒ (b, a) ∈ R. 

• A relation R in a set A is called transitive if (a1, a2) ∈ R, and (a2, a3) ∈ R together imply that (a1, a3) 
∈ R, for all a1, a2, a3 ∈ A. 

• For example: A relation in the set defined by R = {sin a = sin b, a, b ∈ A} is a transitive 
relation. Since for a, b, c ∈ A, let (a, b), (b, c) ∈ R. 

                          ⇒ sin a = sin b and sin b = sin c 

                          ⇒ sin a = sin c 

                          ⇒ (a, c) ∈ R 

• A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive. 

• For example: Relation R in the set  defined by R = {sin a = sin b; a, b ∈ A} is an 
equivalence relation. 

Equivalence Classes 

• Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (Ai) called 
partitions or subdivisions of X satisfying the following conditions: 



• All elements of Ai are related to0020each other for all i. 

• No element of Ai is related to any element of Aj whenever i ≠ j. 

• Ai ∪ Aj = X and Ai ∩ Aj = Φ, i ≠ j 

                     These subsets (Ai) are called equivalence classes. 

• For an equivalence relation in a set X, the equivalence class containing a ∈ X, denoted by [a], is the 
subset of X containing all elements b related to a. 

Trivial Relations 

• Trivial relations are of two types: 

• Empty relation 

• Universal relation 

• A relation in a set A is called an empty relation if no element of A is related to any element of A, 
i.e., R = Φ ⊂ A × A. 

• For example: Consider a relation R in set A = {2, 4, 6} defined by R = {(a, b): a + b is odd, 
where a, b ∈ A}. The relation R is an empty relation since for any pair (a, b) ∈ A × A, a + b is always 
even. 

• A relation R in a set A is called a universal relation if each element of A is related to every element 
of A, i.e., R = A × A. 

• For example: Let A be the set of all students of class XI. Let R be a relation in set A defined by R = 
{(a, b): the sum of the ages of a and b is greater than 10 years}. The relation R is a universal relation 
because it is obvious that the sum of the ages of two students of class XI is always greater than 10 
years. 

 
Solved Examples 

Example 1 

Check whether the relation R in the set of all vowels defined by R = {(u, u), (u, a), (a, u)} is reflexive, 
symmetric or transitive? 

Solution: 

The relation R is defined in the set {a, e, i, o, u} as R = {(u, u), (u, a), (a, u)}. 



The relation R is not reflexive as (a, a), (e, e) (i, i), (o, o) ∉ R. 

Now, (u, a) and (a, u) ∈ R 

Hence, R is symmetric. 

Now, (u, u) (u, a) ∈ R implies (u, a) ∈ R 

Also, (u, a), (a, u) ∈ R implies (u, u) ∈ R 

Hence, R is transitive. 

Thus, the relation R is symmetric and transitive but not reflexive. 

Example 2 

Show that the relation R defined in the set of real numbers as R = {(a, b) a = b or a = −b for a, b ∈ R} 
is an equivalence relation. Also, find its equivalence classes. 

Solution: 

A relation R in R is defined as R = {(a, b): a = b or a = −b, for a, b ∈ R} 

Clearly, (a, a) ∈ R for every a ∈ R, since a = a. 

∴ R is reflexive. 

Now, let (a, b) ∈ R for a, b ∈ R 

⇒ a = b or a = − b 

⇒ b = a or b = − a 

⇒ (b, a) ∈ R 

∴ R is symmetric. 

Now, let (a, b), (b, c) ∈ R, for a, b, c ∈ R 

∴ a = b or a = − b and b = c or b = − c 

Case I 

a = b, b = c 

⇒ a = c 



⇒ (a, c) ∈ R 

Case II 

a = b, b = − c 

⇒ a = − c 

⇒ (a, c) ∈ R 

Case III 

a = − b, b = c 

⇒ a = − c 

⇒ (a, c) ∈ R 

Case IV 

a = − b, b = − c 

⇒ a = c 

⇒ (a, c) ∈ R 

Thus, (a, b), (b, c) ∈ R ⇒ (a, c) ∈ R 

∴ R is transitive. 

Hence, R is an equivalence relation. 

Equivalence class of 0 = [0] = {0} 

Equivalence class of 1 = [1] = {1, − 1} 

Equivalence class of 2 = [2] = {2, − 2} and so on. . . 

There are an infinite number of equivalence classes. 

For every a ∈ R, [a] = {a, − a}. 

Types of Functions 

 
 



• A function f: X → Y is said to be one-one (or injective) if the images of distinct elements 
of X under f are distinct. In other words, a function f is one-one if for every x1, x2 ∈ X, f (x1) = f (x2) 
implies x1 = x2. 

             An example of a one-one function from X to Y is shown in the following diagram. 

 

A function f: X → Y is said to be many-one if the image of distinct elements of X under f are not 
distinct i.e., a function that is not one-one is called a many-one function. 

An example of a many-one function from X to Y is shown in the following diagram. 

 

In this case, two elements f(d) = f(e) = s. 

• A function f: X → Y is defined as onto (or surjective) if every element of Y is the image of some 
element of x in X under f. In other words, f is onto if and only if, y ∈ Y, there exist x ∈ X such that f (x) 
= y. 

• f: X → Y is onto if and only if the range of f = Y. 

• An example of an onto function from X to Y is shown in the following diagram. 



 

•  

• A function from X to Y that is not onto is shown in the following diagram. 

 

• A function f: X → Y is said to be bijective if it is both one-one and onto. 

             A bijective function from X to Y is shown in the following diagram. 

 

  

Solved Examples 

Example 1 

Check whether the function h: R → R defined by h(x) =  is an injective function. 

Solution: 



The given function i.e., h: R → R is defined by 

h(x) =  

It can be observed that 5, 0 ∈ R (considering domain). Hence, we have 

h(5) =  

h(0) =  

∴ h(5) = h(0). 

Hence, the given function i.e., h(x) is not an injective function. 

Example 2 

Check whether the function f: R → R defined by f(x) = x5 + 4 is a bijective function. 

Solution: 

We know that a function is bijective if it is both one-one and onto. 

Now, let x1, x2 ∈ R such that f (x1) = f (x2). Accordingly, 

f (x1) = f (x2) 

 

Therefore, the function f is a one-one function. 

It is clear that for every y ∈ R, there exists  ∈ R such 

that  

Therefore, the function f is an onto function. 

Hence, the given function f is a bijective function. 

Example 3 



Check whether the function f: N → N defined by f(x) = 4x is an onto function. 

Solution: 

The given function f: N → N is defined by 

f(x) = 4x 

We can clearly observe that 2 ∈ N (co-domain). However, there does not exist any 
element y ∈ N (domain) whose image is 2. 

Hence, the given function f is not an onto function. 

 

Composition of Two functions 

 
 
Let f: A → B and g: B → C be two functions. Accordingly, the composition of f and g is denoted 
by gof and is defined as the function gof: A → C given by gof(x) = g(f(x)), for all x∈A. 

 

• For example: If f: N → N is defined by f(x) = x + 1 for all x∈N and g: N → N is defined by g(x) = x2 for 
all x∈N, then gof : N → N is given by 

            gof(x) = g(f(x)) = g(x + 1) = (x + 1)2, where x∈N. 

            Also, fog(x) = f(g(x)) = f(x2) = x2 + 1 for all x∈N 

• If f: A → B and g: B → C are one-one, then gof: A → C is also one-one. 

• If f: A → B and g: B → C are onto, then gof: A → C is also onto. 

• If the composite function gof is one-one, then the function f is also one-one. However, the 
function g may or may not be one-one. 

• If the composite function gof is onto, then the function g is also onto. However, the function f may 
or may not be onto. 

Solved Examples 



Example 1 

Let f: R → R be given by f(x) = 12x2 − x − 11 and g: R → R be given by g(x) = x2. Find fo(gog). 

Solution: 

It is given that 

f: R → R is defined by f(x) = 12x2 − x − 11 

g: R → R is defined by g(x) = x2 

Now, (gog) (x) = g(g(x)) 

= g(x2) 

= (x2)2 
= x4 

(fo(gog))(x) = f((gog)(x)) 

          = f(x4) 

      = 12(x4)2 − x4 − 11 

= 12x8 − x4 − 11 

Example 2 

Let f: R −  → R −  be defined by  and g: R − → R − be defined 

by g(x) = . Show that fog = IA and gof = IB, where IA and IB are identity functions on A and B 

respectively and A = R −  and B = R − . 

Solution: 

(fog)(x) = f(g(x)) 

 



 

 

(gof)(x) = g(f(x)) 

 

Thus, (fog)(x) = x for all x ∈ A ⇒ fog = IA and (gof) (x) = x for all x ∈ B ⇒ gof = IB. 

Hence proved. 

Example 3 

Let f: R → R be defined as f(x) = ; g: R → R be defined as g(x) = x + 2 and h: R → R be defined 
as h(x) = 4x + 9. Find fo(g + h) and (fog) + (foh). 

Solution: 

(g + h): R → R is given by: 

(g + h)(x) = g(x) + h(x) 

= (x + 2) + (4x + 9) 
= 5x + 11 



∴ fo(g + h)(x) = f((g + h)(x)) 

= f(5x + 11) 

=  

Now, (fog)(x) = f(g(x)) 

= f(x + 2) 

=  

(foh)(x) = f(h(x)) 

= f(4x + 9) 

=  

∴(fog + foh) (x) = (fog)(x) + (foh)(x) 

 

 

Invertible Functions 

Key Concepts 

• A function f: X → Y is said to be invertible if there exists a function g: Y→ X such 
that gof = IX and fog = IY. 

• The function g is called the inverse of f and it is denoted by f−1. 

• A function f is invertible if and only if f is one-one and onto. 

• If f: X → Y and g: Y → Z are invertible functions, then gof is also invertible and (gof)−1 = f−1 og−1 

Solved Examples 

Example 1 



Determine whether the following functions have inverse or not. Find the inverse, if it exists. 

(i) f : {10, 12, 15} → {3, 7, 9, 10, 14}is defined as f = {(12, 9), (15, 7), (10, 10)}. 

(ii) g : {2, 4, 6, 8} → {1, 3, 5} is defined as g : {(4, 3), (8, 3), (2, 1), (6, 5)}. 

(iii) h : {11, 16}→ {7, 14} is defined as h :{(11, 7), (16, 14)}. 

Solution: 

(i) The given function f is one-one. However, f is not onto since the elements 3, 14 ∈ {3, 7, 9, 10, 14} 
are not the image of any element in {10, 12, 15} under f. 

Hence, function f is not invertible. 

(ii) The given function g is onto. However, g is not one-one since, g(4) = g(8) = 3. 

Hence, the function g is not invertible. 

(iii) Clearly, the given function h is both one-one and onto. Hence, h is invertible. 

The inverse of h is given by h−1 = {(7, 11), (14, 16)}. 

Example 2 

Determine whether the functions f and g, defined below, are inverses of each other or not. 

f : R − {4} → R − {−3} is given as , and 

g: R − {−3} → R − {4} is given as  

Solution: 

We have  

 



Thus,  where B = R −{−3} and A = R −{4}. 

∴gof = IA and fog = IB. 

Thus, functions f and g are the inverses of each other. 

Example 3 

Let f: R+ → [−3, ∞) be defined as f (x) = 4x2 − 5x − 3 where R+ is the set of all positive real numbers. 
Show that f is invertible and find the inverse of f. 

Solution: 

f: R+ → [−3, ∞) is defined as f (x) = 4x2 − 5x − 3. 

Let y be an arbitrary element of [−3, ∞). 

Let y = 4x2 − 5x − 3 

 

∴f is onto. 

Hence, Range f = [−3, ∞). 

Let us define g: [−3, ∞) → R+ as 

 

Now, we have 



 

Thus, f is invertible and its inverse is given by 

 

Binary Operations 

Definition of Binary Operation Properties 

• A binary operation * on a set A is a function * from A × A → A. We denote *(a, b) by a * b. 

For example, the operation * defined on N as a * b = a2b is a binary operation since * carries 
each pair (a, b) to a unique element a2b in N. 
  

Properties of Binary Operation 
 
 
  

• A binary operation * on a set A is called commutative, if a * b = b * a, for every a, b ∈ A. 

 For example, *: R × R → R defined by a * b = 11 (a + b + ab) is commutative since a * b = 11(a 
+ b + ab) and b * a = 11(b + a +  ba). Therefore, a * b = b * a. 

• A binary operation * on a set A is called associative, if (a * b) * c = a * (b * c), for every a, b, c ∈ A. 

For example, *: N × N → N defined by a * b = 5 + a + b is associative. 

a * (b * c) = 10 + a + b + c = 5 + (5+ a + b) + c = ((a * b) * c 

• For a binary operation *: A × A → A, an element e ∈ A, if it exists, is called its identity element, 
if a * e = a = e * a, for every a ∈ A. 

For example: 1 is the identity for multiplication on R. 



• Given a binary operation *: A × A → A with the identity element e in A, an element a ∈ A is said to be 
invertible with respect to the operation *, if there exists an element b∈A, such that a * b = e = b * a, 
and b is called the inverse of a and is denoted by a −1. 

For example: −a is the inverse of a for the addition operation on R, where 0 is the identity 
element. 

  

Binary Operation Table 

• When the number of elements in set A is small, we can express a binary operation * on A through a 
table called operation table. 

• For an operation *: A × A → A, if A = {a1, a2… an}, then the operation table will have n rows 
and n columns with (i, j)th entry being ai * aj. 

• Given any operation with n rows and n columns with each entry being an element of A = 
{a1, a2 … an}, we can define a binary operation * on A given by ai * aj = entry in ith row and jth column 
of the operation table 

Example: We can define a binary operation * on A = {a, b, c} as follows: 

* a b c 

a a b c 

b b a c 

c c c c 

Here, a * b = b = b * a 

a * c = c = c * a 

b * c = c = c * b 

∴ The operation * is commutative. 
  



Solved Examples 

Example 1: 

A binary operation A × A → A, where A = {a, b, c}, is defined as follows: 

* a b c 

a a a a 

b a b c 

c a c b 

Determine whether the operation * is commutative and associative. Also, find the identity for the 
operation *, if it exists. 

Solution: 

From the table, it can be observed that 

a * b = a = b * a 

a * c = a = c * a  

b * c = c = c * b 

The given binary operation * is commutative since for all x, y, ∈ A = {a, b, c}. 

x * y = y * x 

Now, consider a * (b * c) = a * c = a 

(a * b) * c = a * c = a 

Thus, a * (b * c) = (a * b) * c 

Similarly, we can prove that (x * y) * z = x * (y * z) for all x, y, z ∈ A. 



Thus, the given binary operation * is associative. 

Also, we can observe that for any element x ∈ A, we have x * a = x = a * x. 

Thus, a is the identity element for the given binary operation *. 

Example 2: 

Determine whether the binary operation on the set R, defined by a * b = , a, b ∈ R, is 
commutative or not. 

Solution: 

We have *: R × R → R defined by , a, b ∈ R. 

We know that a binary operation * defined on set A is commutative, if a * b = b * a &mnForE a, b ∈A. 

Now, a * b =  and b * a =  

∴ a * b ≠ b * a 

Hence, the given binary operation * is not commutative. 

Example 3: 

A binary operation * on the set {5, 6, 9} is defined by the following table: 

* 5 6 9 

5 5 6 9 

6 6 9 5 

9 9 5 6 



Compute (5 * 9) * 6 and 5 * (9 * 6). Are they equal? 

Solution: 

From the given binary operation table, we have (5 * 9) = 9 

∴(5 * 9) * 6 = 9 * 6 = 5 

Then, (9 * 6) = 5 

∴5 * (9 * 6) = 5 * 5 = 5 

Thus, (5 * 9) * 6 = 5 * (9 * 6) 

 


