Relations and Functions

Types of Relations

Equivalence Relation

- A relation *R* in a set *A* is called reflexive if $(a, a) \in R$ for every $a \in A$.
- For example: A relation *R* in set *A* = $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ defined by *R* = {sin *a* = sin *b*; *a*, *b* ∈ *A*} is a reflexive relation since sin *a* = sin *a*∀*a* ∈ *A*.
- A relation *R* in a set *A* is called symmetric if $(a_1, a_2) \in R$ implies that $(a_2, a_1) \in R$, for all $a_1, a_2 \in A$.
- For example: A relation in the set $A = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ defined by $R = \{ \sin a = \sin b; a, b \in A \}$ is a symmetric relation. Since for $a, b \in A$, $\sin a = \sin b$ implies $\sin b = \sin a$. So, $(a, b) \in R \Rightarrow (b, a) \in R$.
- A relation R in a set A is called transitive if $(a_1, a_2) \in R$, and $(a_2, a_3) \in R$ together imply that $(a_1, a_3) \in R$, for all $a_1, a_2, a_3 \in A$.
- For example: A relation in the set $A = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ defined by $R = \{ \sin a = \sin b, a, b \in A \}$ is a transitive relation. Since for $a, b, c \in A$, let $(a, b), (b, c) \in R$.

 $\Rightarrow \sin a = \sin b \text{ and } \sin b = \sin c$ $\Rightarrow \sin a = \sin c$ $\Rightarrow (a, c) \in R$

- A relation *R* in a set *A* is said to be an equivalence relation if *R* is reflexive, symmetric and transitive.
 - For example: Relation *R* in the set $A = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ defined by $R = \{ \sin a = \sin b; a, b \in A \}$ is an equivalence relation.

Equivalence Classes

• Every arbitrary equivalence relation *R* in a set *X* divides *X* into mutually disjoint subsets (*A_i*) called partitions or subdivisions of *X* satisfying the following conditions:

- All elements of *A_i* are related to0020each other for all *i*.
- No element of A_i is related to any element of A_j whenever $i \neq j$.
- $A_i \cup A_j = X$ and $A_i \cap A_j = \Phi$, $i \neq j$

These subsets (*Ai*) are called equivalence classes.

• For an equivalence relation in a set *X*, the equivalence class containing $a \in X$, denoted by [a], is the subset of *X* containing all elements *b* related to *a*.

Trivial Relations

- Trivial relations are of two types:
- Empty relation
- Universal relation
- A relation in a set A is called an empty relation if no element of A is related to any element of A, i.e., R = Φ ⊂ A × A.
- For example: Consider a relation *R* in set $A = \{2, 4, 6\}$ defined by $R = \{(a, b): a + b \text{ is odd}, where <math>a, b \in A\}$. The relation *R* is an empty relation since for any pair $(a, b) \in A \times A$, a + b is always even.
- A relation *R* in a set *A* is called a universal relation if each element of *A* is related to every element of *A*, i.e., $R = A \times A$.
- For example: Let *A* be the set of all students of class XI. Let *R* be a relation in set *A* defined by *R* = {(*a*, *b*): the sum of the ages of *a* and *b* is greater than 10 years}. The relation *R* is a universal relation because it is obvious that the sum of the ages of two students of class XI is always greater than 10 years.

Solved Examples

Example 1

Check whether the relation *R* in the set of all vowels defined by $R = \{(u, u), (u, a), (a, u)\}$ is reflexive, symmetric or transitive?

Solution:

The relation *R* is defined in the set $\{a, e, i, o, u\}$ as $R = \{(u, u), (u, a), (a, u)\}$.

The relation *R* is not reflexive as (a, a), (e, e) (i, i), $(o, o) \notin R$.

Now, (u, a) and $(a, u) \in R$

Hence, *R* is symmetric.

Now, (u, u) $(u, a) \in R$ implies $(u, a) \in R$

Also, (u, a), $(a, u) \in R$ implies $(u, u) \in R$

Hence, *R* is transitive.

Thus, the relation *R* is symmetric and transitive but not reflexive.

Example 2

Show that the relation *R* defined in the set of real numbers as $R = \{(a, b) | a = b \text{ or } a = -b \text{ for } a, b \in \mathbb{R}\}$ is an equivalence relation. Also, find its equivalence classes.

Solution:

A relation *R* in **R** is defined as $R = \{(a, b): a = b \text{ or } a = -b, \text{ for } a, b \in \mathbf{R}\}$

Clearly, $(a, a) \in R$ for every $a \in \mathbf{R}$, since a = a.

 \therefore *R* is reflexive.

Now, let $(a, b) \in R$ for $a, b \in \mathbf{R}$

 $\Rightarrow a = b \text{ or } a = -b$

 $\Rightarrow b = a \text{ or } b = -a$

 \Rightarrow (*b*, *a*) \in *R*

 \therefore *R* is symmetric.

Now, let (a, b), $(b, c) \in R$, for $a, b, c \in \mathbf{R}$

 $\therefore a = b \text{ or } a = -b \text{ and } b = c \text{ or } b = -c$

Case I

a = b, b = c

 $\Rightarrow a = c$

 $\Rightarrow (a,c) \in R$

Case II

a = b, b = -c

- $\Rightarrow a = -c$
- \Rightarrow (*a*, *c*) \in *R*

Case III

a = -b, b = c

 $\Rightarrow a = -c$

 \Rightarrow (*a*, *c*) \in *R*

Case IV

a=-b, b=-c

 $\Rightarrow a = c$

 \Rightarrow (*a*, *c*) \in *R*

Thus, (a, b), $(b, c) \in R \Rightarrow (a, c) \in R$

 \therefore *R* is transitive.

Hence, *R* is an equivalence relation.

Equivalence class of $0 = [0] = \{0\}$

Equivalence class of $1 = [1] = \{1, -1\}$

Equivalence class of $2 = [2] = \{2, -2\}$ and so on. . .

There are an infinite number of equivalence classes.

For every $a \in \mathbf{R}$, $[a] = \{a, -a\}$.

Types of Functions

• A function $f: X \to Y$ is said to be **one-one** (or **injective**) if the images of distinct elements of X under f are distinct. In other words, a function f is one-one if for every $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

An example of a one-one function from *X* to *Y* is shown in the following diagram.

A function $f: X \to Y$ is said to be **many-one** if the image of distinct elements of X under f are not distinct i.e., a function that is not one-one is called a many-one function.

An example of a many-one function from *X* to *Y* is shown in the following diagram.

Many-One

In this case, two elements f(d) = f(e) = s.

- A function *f*: *X* → *Y* is defined as **onto** (or **surjective**) if every element of *Y* is the image of some element of *x* in *X* under *f*. In other words, *f* is onto if and only if, *y* ∈ *Y*, there exist *x* ∈ *X* such that *f*(*x*) = *y*.
- $f: X \to Y$ is onto if and only if the range of f = Y.
- An example of an onto function from *X* to *Y* is shown in the following diagram.

•

• A function from *X* to *Y* that is not onto is shown in the following diagram.

• A function $f: X \to Y$ is said to be **bijective** if it is both one-one and onto.

A bijective function from *X* to *Y* is shown in the following diagram.

Solved Examples

Example 1

Check whether the function $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = |2x-5| is an injective function.

Solution:

The given function i.e., $h: \mathbf{R} \to \mathbf{R}$ is defined by

$$h(x) = |2x-5|$$

It can be observed that 5, $0 \in \mathbf{R}$ (considering domain). Hence, we have

$$h(5) = |2 \times 5 - 5| = |10 - 5| = 5$$
$$h(0) = |2 \times 0 - 5| = |0 - 5| = 5$$
$$\therefore h(5) = h(0).$$

Hence, the given function i.e., h(x) is not an injective function.

Example 2

Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^5 + 4$ is a bijective function.

Solution:

We know that a function is bijective if it is both one-one and onto.

Now, let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$. Accordingly,

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^5 + 4 = x_2^5 + 4$$

$$\Rightarrow x_1^5 = x_2^5$$

$$\Rightarrow x_1 = x_2$$

Therefore, the function *f* is a one-one function.

It is clear that for every $y \in \mathbf{R}$, there exists $(y-4)^{\frac{1}{5}} \in \mathbf{R}$ such $f\left[(y-4)^{\frac{1}{5}}\right] = \left[(y-4)^{\frac{1}{5}}\right]^{5} + 4 = (y-4) + 4 = y$ that

Therefore, the function *f* is an onto function.

Hence, the given function *f* is a bijective function.

Example 3

Check whether the function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = 4^x$ is an onto function.

Solution:

The given function $f: \mathbb{N} \to \mathbb{N}$ is defined by

$$f(x) = 4^x$$

We can clearly observe that $2 \in \mathbf{N}$ (co-domain). However, there does not exist any element $y \in \mathbf{N}$ (domain) whose image is 2.

Hence, the given function *f* is not an onto function.

Composition of Two functions

Let $f: A \to B$ and $g: B \to C$ be two functions. Accordingly, the composition of f and g is denoted by *gof* and is defined as the function *gof*: A \to C given by *gof*(x) = *g*(*f*(x)), for all x \in A.

• For example: If $f: \mathbb{N} \to \mathbb{N}$ is defined by f(x) = x + 1 for all $x \in \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ is defined by $g(x) = x^2$ for all $x \in \mathbb{N}$, then *gof* : $\mathbb{N} \to \mathbb{N}$ is given by

 $gof(x) = g(f(x)) = g(x + 1) = (x + 1)^2$, where $x \in \mathbb{N}$.

Also, $fog(x) = f(g(x)) = f(x^2) = x^2 + 1$ for all $x \in \mathbb{N}$

- If $f: A \to B$ and $g: B \to C$ are one-one, then $gof: A \to C$ is also one-one.
- If $f: A \to B$ and $g: B \to C$ are onto, then $gof: A \to C$ is also onto.
- If the composite function *gof* is one-one, then the function *f* is also one-one. However, the function *g* may or may not be one-one.
- If the composite function *gof* is onto, then the function *g* is also onto. However, the function *f* may or may not be onto.

Solved Examples

Example 1

Let $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = 12x^2 - x - 11$ and $g: \mathbf{R} \to \mathbf{R}$ be given by $g(x) = x^2$. Find fo(gog).

Solution:

It is given that

 $f: \mathbf{R} \to \mathbf{R} \text{ is defined by } f(x) = 12x^2 - x - 11$ $g: \mathbf{R} \to \mathbf{R} \text{ is defined by } g(x) = x^2$ Now, (gog)(x) = g(g(x)) $= g(x^2)$ $= (x^2)^2$ $= x^4$ (fo(gog))(x) = f((gog)(x)) $= f(x^4)$ $= 12(x^4)^2 - x^4 - 11$

Example 2

 $= 12x^8 - x^4 - 11$

Let $f: \mathbf{R} - \left\{\frac{11}{3}\right\} \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$ be defined by $f(x) = \frac{4x-5}{11-3x}$ and $g: \mathbf{R} - \left\{\frac{-4}{3}\right\} \to \mathbf{R} - \left\{\frac{11}{3}\right\}$ be defined by $g(x) = \frac{11x+5}{4+3x}$. Show that $fog = I_A$ and $gof = I_B$, where I_A and I_B are identity functions on A and B respectively and $A = \mathbf{R} - \left\{\frac{-4}{3}\right\}$ and $B = \mathbf{R} - \left\{\frac{11}{3}\right\}$.

Solution:

(fog)(x) = f(g(x)) $= f\left(\frac{11x+5}{4+3x}\right)$

$$= \frac{4\left(\frac{11x+5}{4+3x}\right)-5}{11-3\left(\frac{11x+5}{4+3x}\right)}$$
$$= \frac{44x+20-20-15x}{44+33x-33x-15}$$
$$= \frac{29x}{29}$$
$$= x$$
$$(gof)(x) = g(f(x))$$
$$= g\left(\frac{4x-5}{11-3x}\right)$$
$$= \frac{11\left(\frac{4x-5}{11-3x}\right)+5}{4+3\left(\frac{4x-5}{11-3x}\right)}$$
$$= \frac{44x-55+55-15x}{44-12x+12x-15}$$
$$= \frac{29x}{29}$$

Thus, (fog)(x) = x for all $x \in A \Rightarrow fog = I_A$ and (gof)(x) = x for all $x \in B \Rightarrow gof = I_B$.

Hence proved.

Example 3

= x

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = 2x^{\frac{1}{3}}$; $g: \mathbf{R} \to \mathbf{R}$ be defined as g(x) = x + 2 and $h: \mathbf{R} \to \mathbf{R}$ be defined as h(x) = 4x + 9. Find fo(g + h) and (fog) + (foh).

Solution:

(g + h): **R** \rightarrow **R** is given by:

(g + h)(x) = g(x) + h(x)= (x + 2) + (4x + 9)

= 5x + 11

Invertible Functions

Key Concepts

- A function $f: X \to Y$ is said to be invertible if there exists a function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$.
- The function g is called the inverse of f and it is denoted by f^{-1} .
- A function *f* is invertible if and only if *f* is one-one and onto.
- If $f: X \to Y$ and $g: Y \to Z$ are invertible functions, then *gof* is also invertible and $(gof)^{-1} = f^{-1} og^{-1}$

Solved Examples

Example 1

Determine whether the following functions have inverse or not. Find the inverse, if it exists.

(i) $f: \{10, 12, 15\} \rightarrow \{3, 7, 9, 10, 14\}$ is defined as $f = \{(12, 9), (15, 7), (10, 10)\}$.

(ii) $g : \{2, 4, 6, 8\} \rightarrow \{1, 3, 5\}$ is defined as $g : \{(4, 3), (8, 3), (2, 1), (6, 5)\}$.

(iii) $h: \{11, 16\} \rightarrow \{7, 14\}$ is defined as $h: \{(11, 7), (16, 14)\}$.

Solution:

(i) The given function f is one-one. However, f is not onto since the elements 3, $14 \in \{3, 7, 9, 10, 14\}$ are not the image of any element in $\{10, 12, 15\}$ under f.

Hence, function *f* is not invertible.

(ii) The given function *g* is onto. However, *g* is not one-one since, g(4) = g(8) = 3.

Hence, the function g is not invertible.

(iii) Clearly, the given function *h* is both one-one and onto. Hence, *h* is invertible.

The inverse of *h* is given by $h^{-1} = \{(7, 11), (14, 16)\}.$

Example 2

Determine whether the functions *f* and *g*, defined below, are inverses of each other or not.

$$f: \mathbf{R} - \{4\} \rightarrow \mathbf{R} - \{-3\}$$
 is given as $f(x) = \frac{-3x}{x-4}$, and

$$g: \mathbf{R} - \{-3\} \rightarrow \mathbf{R} - \{4\}$$
 is given as $g(x) = \frac{4x}{x+3}$

Solution:

$$(fog)(x) = f(g(x)) = f\left(\frac{4x}{x+3}\right) = \frac{-3\left(\frac{4x}{x+3}\right)}{\frac{4x}{x+3}-4} = \frac{-12x}{4x-4x-12} = \frac{-12x}{-12} = x$$

We have

$$(gof)(x) = g(f(x)) = g\left(\frac{-3x}{x-4}\right) = \frac{4\left(-\frac{3x}{x-4}\right)}{\left(\frac{-3x}{x-4}\right)+3} = \frac{-12x}{-3x+3x-12} = \frac{-12x}{-12} = x$$

Thus,
$$(fog)(x) = x \forall x \in B$$
, where $B = \mathbf{R} - \{-3\}$ and $(gof)(x) = x \forall x \in A$, $A = \mathbf{R} - \{4\}$.

 \therefore gof = I_A and fog = I_B .

Thus, functions *f* and *g* are the inverses of each other.

Example 3

Let $f: \mathbb{R}_+ \to [-3, \infty)$ be defined as $f(x) = 4x^2 - 5x - 3$ where \mathbb{R}_+ is the set of all positive real numbers. Show that f is invertible and find the inverse of f.

Solution:

f: $\mathbf{R}_+ \rightarrow [-3, \infty)$ is defined as $f(x) = 4x^2 - 5x - 3$.

Let *y* be an arbitrary element of $[-3, \infty)$.

Let $y = 4x^2 - 5x - 3$

$$\Rightarrow y = \left(2x - \frac{5}{4}\right)^2 - 3 - \frac{25}{16} = \left(2x - \frac{5}{4}\right)^2 - \frac{73}{16}$$
$$\Rightarrow \left(2x - \frac{5}{4}\right)^2 = y + \frac{73}{16}$$
$$\Rightarrow 2x - \frac{5}{4} = \sqrt{y + \frac{73}{16}} \qquad \left[y \ge -3 \Rightarrow y + \frac{73}{16} \ge 0\right]$$
$$x = \frac{1}{2}\sqrt{y + \frac{73}{16}} + \frac{5}{8}$$

:f is onto.

Hence, Range $f = [-3, \infty)$.

Let us define $g: [-3, \infty) \rightarrow \mathbf{R}_+$ as

$$g(y) = \frac{1}{2}\sqrt{y + \frac{73}{16}} + \frac{5}{8}$$

Now, we have

$$(gof)(x) = g(f(x)) = g(4x^{2} - 5x - 3) = g\left(\left(2x - \frac{5}{4}\right)^{2} - \frac{73}{16}\right) = \frac{1}{2}\sqrt{\left(2x - \frac{5}{4}\right)^{2}} + \frac{5}{8} = x - \frac{5}{8} + \frac{5}{8} = x$$
$$(fog)(y) = f\left(g(y)\right) = f\left(\left(\frac{1}{2}\sqrt{y + \frac{73}{16}}\right) + \frac{5}{8}\right) = \left[2 \times \left(\left(\frac{1}{2}\sqrt{y + \frac{73}{16}}\right) + \frac{5}{8}\right) - \frac{5}{4}\right]^{2} - \frac{73}{16} = y + \frac{73}{16} - \frac{73}{16} = y$$
$$\therefore gof = I_{R_{+}} \text{ and } fog = I_{[-3,\infty)}$$

Thus, *f* is invertible and its inverse is given by

$$f^{-1}(y) = g(y) = \frac{1}{2} \left(\sqrt{y + \frac{73}{16}} \right) + \frac{5}{8}$$

Binary Operations

Definition of Binary Operation Properties

• A binary operation * on a set *A* is a function * from $A \times A \rightarrow A$. We denote *(*a*, *b*) by a * b.

For example, the operation * defined on **N** as $a * b = a^2b$ is a binary operation since * carries each pair (*a*, *b*) to a unique element a^2b in **N**.

Properties of Binary Operation

• A binary operation * on a set *A* is called commutative, if a * b = b * a, for every $a, b \in A$.

For example, *: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by a * b = 11 (a + b + ab) is commutative since a * b = 11(a + b + ab) and b * a = 11(b + a + ba). Therefore, a * b = b * a.

• A binary operation * on a set *A* is called associative, if (a * b) * c = a * (b * c), for every *a*, *b*, $c \in A$.

For example, *: $\mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ defined by a * b = 5 + a + b is associative.

a * (b * c) = 10 + a + b + c = 5 + (5 + a + b) + c = ((a * b) * c)

• For a binary operation *: $A \times A \rightarrow A$, an element $e \in A$, if it exists, is called its identity element, if a * e = a = e * a, for every $a \in A$.

For example: 1 is the identity for multiplication on **R**.

• Given a binary operation *: $A \times A \rightarrow A$ with the identity element e in A, an element $a \in A$ is said to be invertible with respect to the operation *, if there exists an element $b \in A$, such that a * b = e = b * a, and b is called the inverse of a and is denoted by a^{-1} .

For example: -a is the inverse of a for the addition operation on **R**, where 0 is the identity element.

Binary Operation Table

- When the number of elements in set *A* is small, we can express a binary operation * on *A* through a table called operation table.
- For an operation *: $A \times A \rightarrow A$, if $A = \{a_1, a_2... a_n\}$, then the operation table will have *n* rows and *n* columns with (i, j)th entry being $a_i * a_j$.
- Given any operation with *n* rows and *n* columns with each entry being an element of $A = \{a_1, a_2 \dots a_n\}$, we can define a binary operation * on *A* given by $a_i * a_j =$ entry in *i*th row and *j*th column of the operation table

Example: We can define a binary operation * on $A = \{a, b, c\}$ as follows:

*	а	b	С
а	а	b	С
b	b	а	С
С	С	С	С

Here, *a* * *b* = *b* = *b* * *a*

a * c = c = c * a

$$b * c = c = c * b$$

 \therefore The operation * is commutative.

Solved Examples

Example 1:

A binary operation $A \times A \rightarrow A$, where $A = \{a, b, c\}$, is defined as follows:

*	а	b	С
а	а	а	а
b	а	b	С
С	а	С	b

Determine whether the operation * is commutative and associative. Also, find the identity for the operation *, if it exists.

Solution:

From the table, it can be observed that

a * b = a = b * a

a * c = a = c * a

b * c = c = c * b

The given binary operation * is commutative since for all $x, y, \in A = \{a, b, c\}$.

$$x * y = y * x$$

Now, consider a * (b * c) = a * c = a

$$(a * b) * c = a * c = a$$

Thus, a * (b * c) = (a * b) * c

Similarly, we can prove that (x * y) * z = x * (y * z) for all $x, y, z \in A$.

Thus, the given binary operation * is associative.

Also, we can observe that for any element $x \in A$, we have x * a = x = a * x.

Thus, *a* is the identity element for the given binary operation *.

Example 2:

Determine whether the binary operation on the set **R**, defined by $a * b = \frac{2a+5b}{4}$, $a, b \in \mathbf{R}$, is commutative or not.

Solution:

We have *: $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$ defined by $a^*b = \frac{2a+5b}{4}$, $a, b \in \mathbf{R}$.

We know that a binary operation * defined on set *A* is commutative, if $a * b = b * a \&mnForE a, b \in A$.

Now, $a * b = \frac{2a + 5b}{4}$ and $b * a = \frac{2b + 5a}{4}$

 $\therefore a * b \neq b * a$

Hence, the given binary operation * is not commutative.

Example 3:

A binary operation * on the set {5, 6, 9} is defined by the following table:

*	5	6	9
5	5	6	9
6	6	9	5
9	9	5	6

Compute (5 * 9) * 6 and 5 * (9 * 6). Are they equal?

Solution:

From the given binary operation table, we have (5 * 9) = 9

(5*9)*6=9*6=5

Then, (9 * 6) = 5

∴5 * (9 * 6) = 5 * 5 = 5

Thus, (5 * 9) * 6 = 5 * (9 * 6)