Fundamental Operations

IMPORTANT POINTS

- 1. **Fundamental Operations :** In mathematics, the operations : addition (+), subtraction (-), multiplication (x) and division (÷) are called the four fundamental operations.
- 2. Addition and Subtraction:
 - Addition of Like Terms :
 - When all the terms are positive, add their coefficients.
 - When all the terms are negative, add their coefficients without considering their negative signs and then prefix the minus sign to the sum.
 - Addition of Unlike Terms: As discussed above, the sum of two or more like terms is a single like term; but the two unlike terms cannot be added together to get a single term.
 - **Subtraction of Like Terms**: The same rules, as those for subtraction of integers, are applied for the subtraction of like terms. The result of subtraction of two like terms is also a like term.

Add the positive terms together and negative terms separately together. Then, find the result of two terms obtained.

EXERCISE 19(A)

Question 1.

Fill in the blanks:

(i) $5 + 4 = \dots$ and $5x + 4x = \dots$
(ii) $12 + 18 = \dots$ and $12x^2y + 18x^2y = \dots$
(iii) 7 + 16 = and 7a + 16b =
(iv) $1 + 3 = \dots$ and $x^2y + 3xy^2 = \dots$
(v) 7 – 4 = and 7ab – 4ab =
(vi) 12 – 5 = and 12x – 5y =
(vii) 35 – 16 = and 35ab – 16ba =
(viii) $28 - 13 = \dots$ and $28ax^2 - 13a^2x = \dots$
Solution:
(i) $5 + 4 = 9$ and $5x + 4x = 9x$
(ii) $12 + 18 = 30$ and $12x^2y + 18x^2y = 30x^2y$
(iii) $7 + 16 = 23$ and $7a + 16b = 7a + 16b$
(iv) $1 + 3 = 4$ and $x^2y + 3xy^2 = x^2y + 3xy^2$
(v) $7 - 4 = 3$ and $7ab - 4ab = 3ab$
(vi) $12 - 5 = 7$ and $12x - 5y = 12x - 5y$
(vii) 35 – 16 = 19 and 35ab – 16ba = 19ab
(viii) $28 - 13 = 15$ and $28ax^2 - 13a^2x = 28ax^2 - 13a^2x$
(VIII) 20 10 - 10 and 20ax 10a x - 20ax - 10a x

Question 2.

Fill in the blanks:

```
(i) The sum of -2 and -5 = \dots and the sum of -2x and -5x = \dots
```

- (ii) The sum of 8 and $-3 = \dots$ and the sum of 8ab and $-3ab = \dots$
- (iii) The sum of -15 and $-4 = \dots$ and the sum of -15x and $-4y = \dots$

......

(iv)
$$15 + 8 + 3 = \dots$$
 and $15x + 8y + 3x = \dots$

(vi)
$$25 - 7 - 9 =$$
and $25xy - 7xy - 9yx =$

$$(vii) - 4 - 6 - 5 = \dots$$
 and $- 4ax - 6ax - 5ay = \dots$

Solution:

- (i) The sum of -2 and -5 = -7 and the sum of -2x and -5x = -7x
- (ii) The sum of 8 and -3 = 5 and the sum of 8ab and -3 ab = 5ab
- (iii) The sum of -15 and -4 = -19 and the sum of -15x and -4y = -15x 4y
- (iv) 15 + 8 + 3 = 26 and 15x + 8y + 3x = 18x + 8y
- (v) 12 9 + 15 = 18 and 12ab 9ab + 15ba = 18ab
- (vi) 25 7 9 = 9 and 25xy 7xy 9yx = 9xy
- (vii) 4 6 5 = -15 and -4ax 6ax 5ay = -10ax 5ay

Question 3.

Add:

- (i) 8xy and 3xy
- (ii) 2xyz, xyz and 6xyz
- (iii) 2a, 3a and 4b
- (iv) 3x and 2y
- (v) 5m, 3n and 4p
- (vi) 6a, 3a and 9ab
- (vii) 3p, 4q and 9q
- (viii) 5ab, 4ba and 6b
- (ix) 50pq, 30pq and 10pr
- (x) 2y, -y and -3y
- (xi) 3b and -b
- (xii) 5b, -4b and -10b
- (xiii) 2c, -c and 5c

- (i) 8xy + 3xy = 11xy
- (ii) 2xyz + xyz + 6xyz = (2 + 1 + 6) xyz = 9xyz

(iii)
$$2a + 3a + 4b$$

= $(2 + 3) a + 4b$
= $5a + 4b$

(iv)
$$3x + 2y = 3x + 2y$$

(v)
$$5m + 3n + 4p = 5m + 3n + 4p$$

(vi)
$$6a + 3a + 9ab$$

=(6 + 3) $a + 9ab$
= $9a + 9ab$

(vii)
$$3p + 4q + 9q$$

= $3p + (4 + 9)q$
= $3p + 13q$

(viii)
$$5ab + 4ba + 6b$$

= $(5 + 4) ab + 6b$
= $9ab + 6b$

(ix)
$$50pq + 30pq + 10pr$$

= $(50 + 30).pq + 10 pr$
= $80pq + 10pr$

$$(x) (-2y) + (-y) + (-3y)$$

$$= -(2+1+3)y$$

$$= -6y$$

$$(xi) (-3b) + (-b)$$

= $-(3+1)b$
= $-4b$

(xii)
$$5b + (-4b) + (-10b)$$

= $5b - (4 + 10)b$
= $5b - 14b = -9b$

(xiii)
$$(-2c) + (-c) + (-5c)$$

= $-(2+1+5)c = -8c$

Question 4.

Evaluate:

(i)
$$6a - a - 5a - 2a$$

(ii)
$$2b - 3b - b + 4b$$

(iii)
$$3x - 2x - 4x + 7x$$

$$(iv) 5ab + 2ab - 6ab + ab$$

(v)
$$8x - 5y - 3x + 10y$$

(i)
$$6a - a - 5a - 2a = 6a - (1 + 5 + 2).a$$

= $6a - 8a = -2a$

(ii)
$$2b-3b-b+4b$$

= $2b+4b-(3+1).b$
= $6b-4b=2b$

(iii)
$$3x - 2x - 4x + 7x$$

= $3x + 7x - 2x - 4x$
= $(3 + 7).x - (2 + 4).x$
= $10x - 6x = 4x$

(iv)
$$5ab + 2ab - 6ab + ab$$

= $5ab + 2ab + ab - 6ab$
= $8ab - 6ab = 2ab$

(v)
$$8x - 5y - 3x + 10y$$

= $8x - 3x + 10y - 5y$
= $5x + 5y$

Question 5.

Evaluate:

(1)
$$-7x + 9x + 2x - 2x$$

(ii)
$$5ab - 2ab - 8ab + 6ab$$

$$(iii)$$
-8 a - 3 a + 12 a + 13 a - 6 a

(iv)
$$19abc - 11abc - 12abc + 14abc$$

Solution:

$$(i) - 7x + 9x + 2x - 2x$$

= $9x + 2x - 7x - 2x$
= $11x - 9x = 2x$

(ii)
$$5ab - 2ab - 8ab + 6ab$$

= $5ab + 6ab - 2ab - 8ab$
= $11ab - 10ab = ab$

(iii)
$$-8a - 3a + 12a + 13a - 6a$$

= $12a + 13a - (8a + 3a + 6a)$
= $25a - 17a = 8a$

(iv)
$$19abc - 11abc - 12abc + 14abc$$

= $abc (19 - 11 - 12 + 14)$
= $abc (33 - 23) = 10abc$

Question 6.

Subtract the first term from the second:

- (i) 4ab, 6ba
- (ii) 4.8b, 6.8b
- (iii) 3.5abc, 10.5abc
- (iv) $3\frac{1}{2}mn, 8\frac{1}{2}nm$

- (i) 6ba 4ab = 2ab
- (ii) 6.8b 4.8b = 2b
- (iii) 10.5abc 3.5abc = 7abc

(iv)
$$8\frac{1}{2}nm - 3\frac{1}{2}nm$$

= $\frac{17}{2}nm - \frac{7}{2}mn$
= $\frac{17mn - 7mn}{2} = \frac{10mn}{2} = 5mn$

Question 7.

Simplify:

(i)
$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2$$

(ii)
$$4a + 3b - 2a - b$$

(iii)
$$2xy + 4yz + 5xy + 3yz - 6xy$$

(iv)
$$ab + 15ab - 11ab - 2ab$$

$$(v)$$
 $6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2$

(vi)
$$8abc + 2ab - 4abc + ab$$

$$(vii) 9xyz + 15yxz - 10zyx - 2zxy$$

(viii)
$$13pqr + 2p + 4q - 6pqr + 5pqr$$

(ix)
$$4ab + 0 - 2ba$$

(x)
$$6x^2y - 2xy^2 + 5x^2y - xy^2$$

(xi)
$$6.4a + 5.3b - 2.4a - 2.2b$$

(xii)
$$2.5a + 4.6b + 1.2a - 3.6b$$

(xiii)
$$22m - 12\frac{1}{2}n - 15p + 16n$$

(xiv)
$$6p + \frac{2}{3}q - 1\frac{1}{2}p + \frac{1}{3}q + 2q$$

$$(xv)$$
 $2\frac{2}{3}xy - 3\frac{1}{2}xy + 3\frac{1}{3}xy - 2\frac{1}{2}xy$

(i)
$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2$$

= $2a^2b^2 + 8a^2b^2 + 5ab^2 - 3ab^2$
= $10a^2b^2 + 2ab^2$

(ii)
$$4a + 3b - 2a - b$$

= $4a - 2a + 3b - b$
= $2a + 2b$

(iii)
$$2xy + 4yz + 5xy + 3yz - 6xy$$

= $2xy + 5xy - 6xy + 4yz + 3yz$
= $7xy - 6xy + 7yz$
= $x + 7yz$

(iv)
$$ab + 15ab - 11ab - 2ab$$

= $16ab - 13ab = 3ab$

(v)
$$6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2$$

= $6a^2 + 2a^2 - 4a^2 + 5b^2 - 3b^2$
= $4a^2 + 2b^2$

(vi)
$$8abc + 2ab - 4abc + ab$$

= $8abc - 4abc + 2ab + ab$
= $4abc + 3ab$

(vii)
$$9xyz + 15yxz - 10zyx - 2zxy$$

= $9xyz + 15xyz - 10xyz - 2xyz$
= $24xyz - 12xyz = 12xyz$

(viii)
$$13pqr + 2p + 4q - 6pqr + 5pqr$$

$$= 13pqr + 5pqr - 6pqr + 2p + 4q$$
$$= 12pqr + 2p + 4q$$

(ix)
$$4ab + 0 - 2ba$$

= $4ab - 2ab + 0 = 2ab$

(xii)
$$6x^2y - 2xy^2 + 5x^2y - xy^2$$

= $6x^2y + 5x^2y - 2xy^2 - xy^2$
= $11x^2y - 3xy^2$

(xi)
$$6.4a + 5.3b - 2.4a - 2.2b$$

= $6.4a - 2.4a + 5.3b - 2.2b$
= $4a + 3.1b$

(xii)
$$2.5a + 4.6b + 1.2a - 3.6b$$

= $2.5a + 1.2a + 4.6b - 3.6b$
= $3.7a + b$

(xiii)
$$22m - 12\frac{1}{2}n - 15p + 16n$$

$$= 22m - \frac{25}{2}n - 15p + 16n$$

$$= 22m + 16n - \frac{25}{2}n - 15p$$

$$= 22m \div \frac{32n - 25n}{2} - 15p$$

$$= 22m \div \frac{7n}{2} - 15p$$

$$= 22m + 3\frac{1}{2}n - 15p$$

(xiv)
$$6p + \frac{2}{3}q - 1\frac{1}{2}p + \frac{1}{3}q + 2q$$

= $6p - \frac{3}{2}p + \frac{2}{3}q + \frac{1}{3}q + 2q$

$$= \left(\frac{12p - 3p}{2}\right) + \left(\frac{2q + q + 6q}{3}\right)$$
$$= \frac{9}{2}p + 3q = 4\frac{1}{2}p + 3q$$

$$(xv)$$
 $2\frac{2}{3}xy - 3\frac{1}{2}xy + 3\frac{1}{3}xy - 2\frac{1}{2}xy$

$$= xy \left(2\frac{2}{3} - 3\frac{1}{2} + 3\frac{1}{3} - 2\frac{1}{2} \right)$$

$$= xy \left(\frac{8}{3} - \frac{7}{2} + \frac{10}{3} - \frac{5}{2} \right)$$

$$= xy \left(\frac{16 - 21 + 20 - 15}{6} \right)$$

$$= xy \left(\frac{36 - 36}{6} \right) = 0 \times xy = 0$$

EXERCISE 19(B)

Question 1.

Find the sum of:

(i)
$$3a + 4b + 7c$$
, $-5a + 3b - 6c$
and $4a - 2b - 4c$.

(ii)
$$2x^2 + xy - y^2$$
, $-x^2 + 2xy + 3y^2$
and $3x^2 - 10xy + 4y^2$.

(iii)
$$x^2 - x + 1$$
, $-5x^2 + 2x - 2$
and $3x^2 - 3x + 1$

(iv)
$$a^2 - ab + bc$$
, $2ab + bc - 2a^2$
and $-3bc + 3a^2 + ab$.

(v)
$$4x^2 + 7 - 3x$$
, $4x - x^2 + 8$
and $-10 + 5x - 2x^2$.

(vi)
$$3x + 4xy - y^2$$
, $xy - 4x + 2y^2$
and $3y^2 - xy + 6x$.

(i)
$$(3a + 4b + 7c) + (-5a + 3b - 6c)$$

 $+ (4a - 2b - 4c)$
 $= 3a + 4b + 7c - 5a + 3b - 6c$
 $+ 4a - 2b - 4c$
 $= 3a + 4a - 5a + 4b + 3b - 2b$
 $+ 7c - 6c - 4c$
 $= 7a - 5a + 7b - 2b + 7c - 10c$
 $= 2a + 5b - 3c$
 (ii) $(2x^2 + xy - y^2) + (-x^2 + 2xy + 3y^2)$
 $+ (3x^2 - 10xy + 4y^2)$
 $= 2x^2 + xy - y^2 - x^2 + 2xy + 3y^2$
 $+ 3x^2 - 10xy + 4y^2$
 $= 2x^2 + 3x^2 - x^2 + xy + 2xy - 10xy$
 $+ 3y^2 + 4y^2 - y^2$
 $= 5x^2 - x^2 + 3xy - 10xy + 7y^2 - y^2$
 $= 4x^2 - 7xy + 6y^2$
(iii) $(x^2 - x + 1) + (-5x^2 + 2x - 2)$
 $+ (3x^2 - 3x + 1)$
 $= x^2 - x + 1 - 5x^2 + 2x - 2 + 3x^2$
 $- 3x + 1$
 $= x^2 + 3x^2 - 5x^2 + 2x - x - 3x + 1 + 1 - 2$
 $= 4x^2 - 5x^2 + 2x - 4x + 2 - 2 = -x^2 - 2x$
(iv) $(a^2 - ab + bc) + (2ab + bc - 2a^2)$
 $+ (-3bc + 3a^2 + ab)$
 $= a^2 - ab + bc + 2ab + bc - 2a^2 - 3bc$
 $+ 3a^2 + ab$
 $= a^2 + 3a^2 - 2a^2 + 2ab + ab - ab + bc$
 $+ bc - 3bc$
 $= 4a^2 - 2a^2 + 3ab - ab + 2bc - 3bc$
 $= 2a^2 + 2ab - bc$

(v)
$$(4x^2 + 7 - 3x) + (4x - x^2 + 8)$$

 $+ (-10 + 5x - 2x^2)$
 $= 4x^2 + 7 - 3x + 4x - x^2 + 8$
 $- 10 + 5x - 2x^2$
 $= 4x^2 - x^2 - 2x^2 + 7 + 8 - 10$
 $+ 4x + 5x - 3x$
 $= 4x^2 - 3x^2 + 15 - 10 + 9x - 3x$
 $= x^2 + 5 + 6x$
(vi) $(3x + 4xy - y^2) + (xy - 4x + 2y^2)$
 $+ (3y^2 - xy + 6x)$
 $= 3x + 4xy - y^2 + xy - 4x + 2y^2$
 $+ 3y^2 - xy + 6x$
 $= 3x + 6x - 4x + 4xy + xy - xy$
 $+ 2y^2 + 3y^2 - y^2$
 $= 9x - 4x + 5xy - xy + 5y^2 - y^2$
 $= 5x + 4xy + 4y^2$

Question 2.

Add the following expressions:

(i)
$$-17x^2 - 2xy + 23y^2$$
, $-9y^2 + 15x^2 + 7xy$
and $13x^2 + 3y^2 - 4xy$

(ii)
$$-x^2 - 3xy + 3y^2 + 8$$
, $3x^2 - 5y^2 - 3 + 4xy$
and $-6xy + 2x^2 - 2 + y^2$

(iii)
$$a^3 - 2b^3 + a$$
, $b^3 - 2a^3 + b$
and $-2b + 2b^3 - 5a + 4a^3$

(i)
$$(-17x^2 - 2xy + 23y^2) + (-9y^2 + 15x^2 + 7xy)$$

 $+ (13x^2 + 3y^2 - 4xy)$
 $= -17x^2 - 2xy + 23y^2 - 9y^2 + 15x^2$
 $+ 7xy + 13x^2 + 3y^2 - 4xy$
 $= -17x^2 + 15x^2 + 13x^2 - 2xy - 4xy$
 $+ 7xy + 23y^2 + 3y^2 - 9y^2$
 $= 11x^2 + xy + 17y^2$
(ii) $(-x^2 - 3xy + 3y^2 + 8) + (3x^2 - 5y^2 - 3)$
 $+ 4xy) + (-6xy + 2x^2 - 2 + y^2)$
 $= -x^2 - 3xy + 3y^2 + 8 + 3x^2 - 5y^2 - 3$
 $+ 4xy - 6xy + 2x^2 - 2 + y^2$
 $= -x^2 + 3x^2 + 2x^2 - 3xy - 6xy + 4xy$
 $+ 3y^2 + y^2 - 5y^2 + 8 - 3 - 2$
 $= 4x^2 - 5xy - y^2 + 3$
(iii) $(a^3 - 2b^3 + a) + (b^3 - 2a^3 + b)$
 $+ (-2b + 2b^3 - 5a + 4a^3)$
 $= a^3 - 2b^3 + a + b^3 - 2a^3 + b - 2b$
 $+ 2b^3 - 5a + 4a^3$
 $= a^3 + 4a^3 - 2a^3 - 2b^3 + b^3 + 2b^3$
 $+ a - 5a + b - 2b$
 $= 3a^3 + b^3 - 4a - b$

Question 3.

Evaluate:

(i)
$$3a - (a + 2b)$$

(ii)
$$(5x - 3y) - (x + y)$$

(iii)
$$(8a + 15b) - (3b - 7a)$$

$$(iv) (8x + 7y) - (4y - 3x)$$

(v)
$$7 - (4a - 5)$$

$$(vi)$$
 $(6y-13)-(4-7y)$

(i)
$$3a - (a + 2b)$$

= $3a - a - 2b = 2a - 2b$
= $2(a - b)$
(ii) $(5x - 3y) - (x + y)$

$$=5x-3y-x-y$$

$$= 5x - x - 3y - y$$

= $4x - 4y = 4(x - y)$

(iii)
$$(8a + 15b) - (3b - 7a)$$

= $8a + 15b - 3b + 7a$
= $8a + 7a + 15b - 3b$
= $15a + 12b$

$$(iv) (8x + 7y) - (4y - 3x)$$

$$= 8x + 7y - 4y + 3x$$

$$= 8x + 3x + 7y - 4y$$

$$= 11x + 3y$$

$$(v) \cdot 7 - (4a - 5)$$

$$= 7 - 4a + 5 = 7 + 5 - 4a$$

$$= 12 - 4a$$

$$(vi) (6y - 13) - (4 - 7y)$$

$$' = 6y - 13 - 4 + 7y$$

$$= 6y + 7y - 13 - 4$$

$$= 13y - 17$$

Question 4.

Subtract:

(i)
$$5a - 3b + 2c$$
 from $a - 4b - 2c$.

(ii)
$$4x - 6y + 3z$$
 from $12x + 7y - 21z$.

(iii)
$$5-a-4b+4c$$
 from $5a-7b+2c$.

$$(iv) - 8x - 12y + 17z$$
 from $x - y - z$.

(v)
$$2ab + cd - ac - 2bd$$
 from $ab - 2cd + 2ac + bd$.

(i)
$$(a-4b-2c) - (5a-3b+2c)$$

= $a-4b-2c-5a+3b-2c$
= $a-5a-4b+3b-2c-2c$
= $-4a-b-4c$.

(ii)
$$(12x + 7y - 21z) - (4x - 6y + 3z)$$

= $12x + 7y - 21z - 4x + 6y - 3z$
= $12x - 4x + 7y + 6y - 21z - 3z$
= $8x + 13y - 24z$.

(iii)
$$(5a-7b+2c)-(5-a-4b+4c)$$

= $5a-7b+2c-5+a+4b-4c$
= $5a+a-7b+4b+2c-4c-5$
= $6a-3b-2c-5$.

(iv)
$$(x-y-z) - (-8x-12y+17z)$$

= $x-y-z+8x+12y-17z$
= $x+8x+12y-y-z-17z$
= $9x+11y-18z$.

(v)
$$(ab - 2cd + 2ac + bd)$$

 $-(2ab + cd - ac - 2bd)$
 $= ab - 2cd + 2ac + bd - 2ab - cd$
 $+ ac + 2bd$
 $= ab - 2ab - 2cd - cd + 2ac$
 $+ ac + bd + 2bd$
 $= -ab - 3cd + 3ac + 3bd$

Question 5.

(i) Take
$$-ab + bc - ca$$
 from $bc - ca + ab$.

(ii) Take
$$5x + 6y - 3z$$
 from $3x + 5y - 4z$.

(iii) Take
$$\frac{-3}{2}p + q - r$$
 from $\frac{1}{2}p - \frac{1}{3}q - \frac{3}{2}r$.

(iv) Take
$$1 - a + a^2$$
 from $a^2 + a + 1$.

(i)
$$(bc - ca + ab) - (-ab + bc - ca)$$

= $bc - ca + ab + ab - bc + ca$
= $bc - bc - ca + ca + ab + ab$
= $2ab$

(ii)
$$(3x + 5y - 4z) - (5x + 6y - 3z)$$

= $3x + 5y - 4z - 5x - 6y + 3z$
= $3x - 5x + 5y - 6y - 4z + 3z$
= $-2x - y - z$

(iii)
$$\left(\frac{1}{2}p - \frac{1}{3}q - \frac{3}{2}r\right) - \left(-\frac{3}{2}p + q - r\right)$$

$$= \frac{1}{2}p - \frac{1}{3}q - \frac{3}{2}r + \frac{3}{2}p - q + r$$

$$= \frac{1}{2}p + \frac{3}{2}p - \frac{1}{3}q - q - \frac{3}{2}r + r$$

$$= \frac{3p + 9p - 2q - 6q - 9r + 6r}{6}$$
[Since L.C.M. = 6]
$$= \frac{12p}{6} - \frac{8q}{6} - \frac{3r}{6}$$

$$= 2p - \frac{4}{3}q - \frac{1}{2}r$$

(iv)
$$(a^2 + a + 1) - (1 - a + a^2)$$

= $a^2 + a + 1 - 1 + a - a^2$
= $a^2 - a^2 + a + a + 1 - 1 = 2a$

Question 6.

From the sum of x + y - 2z and 2x - y + z subtract x + y + z. **Solution:**

$$(x + y - 2z) + (2x - y + z) - (x + y + z)$$

$$= x + y - 2z + 2x - y + z - x - y - z$$

$$= x + 2x - x + y - y - y - 2z - z + z$$

$$= 2x - y - 2z$$

Question 7.

From the sum of 3a - 2b + 4c and 3b - 2c subtract a - b - c.

$$(3a-2b+4c) + (3b-2c) - (a-b-c)$$

$$= 3a-2b+4c+3b-2c-a+b+c$$

$$= 3a-a+3b+b-2b+4c+c-2c$$

$$= 2a+2b+3c$$

Question 8.

Subtract x - 2y - z from the sum of 3x - y + z and x + y - 3z.

Solution:

$$(3x - y + z) + (x + y - 3 z) - (x - 2y - z)$$

= $3x - y + z + x + y - 3z - x + 2y + z$
= $3x + x - x - y + y + 2y + z + z - 3z$
= $3x + 2y - z$

Question 9.

Subtract the sum of x + y and x - z from the sum of x - 2z and x + y + z **Solution:**

$$(x-2z) + (x+y+z) - \{(x+y) + (x-z)\}\$$

$$= x - 2z + x + y + z - \{x + y + x - z\}\$$

$$= x - 2z + x + y + z - x - y - x + z$$

$$= x + x - x - x + y - y + z + z - 2z$$

$$= 0$$

Question 10.

By how much should x + 2y - 3z be increased to get 3x?

Solution:

$$3x - (x + 2y - 3z)$$

= $3x - x - 2y + 3z$
= $2x - 2y + 3z$

Question 11.

The sum of two expressions is $5x^2 - 3y^2$. If one of them is $3x^2 + 4xy - y^2$, find the other. **Solution:**

$$(5x^{2} - 3y^{2}) - (3x^{2} + 4xy - y^{2})$$

$$= 5x^{2} - 3y^{2} - 3x^{2} - 4xy + y^{2}$$

$$= 5x^{2} - 3x^{2} - 4xy - 3y^{2} + y^{2}$$

$$= 2x^{2} - 4xy - 2y^{2}$$

Question 12.

The sum of two expressions is $3a^2 + 2ab - b^2$. If one of them is $^22a^3b^2$, find the other. **Solution:**

$$(3a^{2} + 2ab - b^{2}) - (2a^{2} + 3b^{2})$$

$$= 3a^{2} + 2ab - b^{2} - 2a^{2} - 3b^{2}$$

$$= 3a^{2} - 2a^{2} + 2ab - b^{2} - 3b^{2}$$

$$= a^{2} + 2ab - 4b^{2}$$

EXERCISE 19(C)

Question 1.

Fill in the blanks:

- (i) $6 \times 3 = \dots$ and $6x \times 3x = \dots$
 - (ii) $6 \times 3 = \dots$ and $6x^2 \times 3x^3 = \dots$
 - (iii) $5 \times 4 =$ and $5x \times 4y =$
 - (iv) $4 \times 7 = \dots$ and $4ax \times 7x = \dots$
 - (v) $6 \times 2 =$ and $6xy \times 2xy =$
 - (vi) 12×4 and $12ax^2 \times 4ax =$
 - (vii) $1 \times 8 = \dots$ and $a^2xy^2 \times 8a^3x^2y = \dots$
- (viii) $15 \times 3 = \dots$ and $15x \times 3x^5y^2 = \dots$

- - (ii) $6 \times 3 = 18$ and $6x^2 \times 3x^3$ = $6 \times 3 \times x^2 \times x^3 = 18x^5$
 - (iii) $5 \times 4 = 20$ and $5x \times 4y$ = $5 \times 4 \times x \times y = 20xy$
 - (iv) $4 \times 7 = 28$ and $4ax \times 7x$ = $4 \times 7 \times a \times x \times x = 28ax^2$
 - (v) $6 \times 2 = 12$ and $6xy \times 2xy$ = $6 \times 2 \times x \times x \times y \times y = 12x^2y^2$
 - (vi) $12 \times 4 = 48$ and $12ax^2 \times 4ax$ = $12 \times 4 \times a \times a \times x^2 \times x$ = $48a^2x^3$
 - (vii) $1 \times 8 = 8$ and $a^2xy^2 \times 8a^3x^2y$ = $1 \times 8 \times a^2 \times a^3 \times x \times x^2 \times y^2 \times y$ = $8a^5x^3y^3$
- (viii) $15 \times 3 = 45$ and $15x \times 3x^5y^2$ = $15 \times 3 \times x \times x^5 \times y^2$ = $45x^6y^2$

Question 2.

(i)
$$4x \times 6x \times 2 = \dots$$

(ii)
$$3ab \times 6ax =$$

(iiii)
$$x \times 2x^2 \times 3x^3 = \dots$$

(iv)
$$5 \times 5a^3 = \dots$$

$$(v) 6 \times 6x^2 \times 6x^2y^2 = \dots$$

$$(vi) - 8x \times - 3x = -$$

$$(vii) - 5 \times -3x \times 5x^2 = \dots$$

(viii)
$$8 \times -4xy^2 \times 3x^3y^2 = \dots$$

$$(ix) - 4x \times 5xy \times 3z = \dots$$

(x)
$$5x \times 2x^2y \times (-7y^3) \times 2x^3y^2 = \dots$$

(i)
$$4x \times 6x \times 2 = 4 \times 6 \times 2 \times x \times x$$

= $48x^2$

(ii)
$$3ab \times 6ax = 3 \times 6 \times a \times a \times b \times x$$

$$= 18a^2bx$$

(iii)
$$x \times 2x^2 \times 3x = 1 \times 2 \times 3 \times x^{1+2+3}$$

= $6x^6$

(iv)
$$5 \times 5a^3 = 25a^3$$

(v)
$$6 \times 6x^2 \times 6x^2y^2 = 6 \times 6 \times 6 \times x^{2+2}y^2$$

= $216x^4y^2$

$$(vi)$$
 $-8x \times -3x = -8 \times -3 \times x^{1+1}$
= $24x^2$

(vii)
$$-5 \times -3x \times 5x^2 = -5 \times -3 \times 5 \times x^{1+2}$$

= $75x^3$

(viii)
$$8 \times -4xy^2 \times 3x^3y^2$$

= $8 \times -4 \times 3 \times x^{1+3}y^{2+2}$
= $-96x^4y^4$

$$(ix) -4x \times 5xy \times 3z$$

$$= -4 \times 5 \times 3 \times x^{1+1} \times y \times z$$

$$= -60x^2yz$$

(x)
$$5x \times 2x^2y \times -7y^3 \times 2x^3y^2$$

= $5 \times 2 \times -7 \times 2 \times x^{1+2+3} \times y^{1+3+2}$
= $-140x^6y^6$

Question 3.

(i)
$$3x^3 \times 5x^4$$

(ii)
$$5a^2 \times 7a^7$$

(iii)
$$3abc \times 6ac^3$$

(iv)
$$a^2b^2 \times 5a^3b^4$$

$$(v) 2x^2y^3 \times 5x^3y^4$$

(vi)
$$abc \times bcd$$

Solution:

(i)
$$3x^3 \times 5x^4 = 3 \times 5x^{3+4} = 15x^7$$

(ii)
$$5a^2 \times 7a^7 = 5 \times 7 \times a^{2+7} = 35a^9$$

(iii)
$$3abc \times 6ac^3 = 3 \times 6 \times a^{1+1} \times b \times c^{1+3}$$

= $18a^2bc^4$

(iv)
$$a^2b^2 \times 5a^3b^4 = 1 \times 5 \times a^{2+3}b^{2+4}$$

= $5a^5b^6$

(v)
$$2x^2y^3 \times 5x^3y^4 = 2 \times 5 \times x^{2+3} \times y^{3+4}$$

= $10x^5y^7$

(vi)
$$abc \times bcd = a \times b^{1+1} \times c^{1+1} \times d$$

= ab^2c^2d

Question 4.

Multiply:

(i)
$$a + b$$
 by ab

(ii)
$$3ab - 4b$$
 by $3ab$

(iii)
$$2xy - 5by$$
 by $4bx$

(iv)
$$4x + 2y$$
 by $3xy$

$$(v) x^2 - x \text{ by } 2x$$

$$(vi)$$
 1 + 4x by x

(vii)
$$9xy^2 + 3x^2y$$
 by $5xy$

(viii)
$$6x - 5y$$
 by $3axy$

$$(i) (a + b) \times ab = a \cdot ab + b \cdot ab$$
$$= a^2b + ab^2$$

(ii)
$$(3ab - 4b) \times 3ab = 3ab \times 3ab - 4b \times 3ab$$

= $3 \times 3a^{1+1}b^{1+1} - 4 \times 3 \times a \times b^{1+1}$
= $9a^2b^2 - 12ab^2$

(iii)
$$(2xy - 5by) \times 4bx = 2xy \cdot 4bx - 5by \cdot 4bx$$

= $8bx^2y - 20b^2xy$

(iv)
$$(4x + 2y) \times 3xy = 4x.3xy + 2y.3xy$$

= $12x^2y + 6xy^2$

(v)
$$(x^2 - x) \times 2x = x^2 \cdot 2x - x \cdot 2x$$

= $2x^3 - 2x^2$

(vi)
$$(1 + 4x) \times x = 1 \cdot x + 4x \cdot x$$

= $x + 4x^2$

(vii)
$$(9xy^2 + 3x^2y) \times 5xy$$

= $9xy^2 \cdot 5xy + 3x^2y \cdot 5xy$
= $45x^2y^3 + 15x^3y^2$

(viii)
$$(6x - 5y) \times 3axy$$

= $6x \cdot 3axy - 5y \cdot 3axy$
= $18ax^2y - 15axy^2$

Question 5.

Multiply:

(i)
$$-x + y - z$$
 and $-2x$

(ii)
$$xy - yz$$
 and x^2yz^2

(iii)
$$2xyz + 3xy$$
 and $-2y^2z$

$$(iv) - 3xy^2 + 4x^2y \text{ and } -xy$$

(v)
$$4xy$$
 and $-x^2y - 3x^2y^2$

(i)
$$(-x + y - z) \times -2x$$

= $-x - 2x + y - 2x - z - 2x$
= $2x^2 - 2xy + 2xz$

(ii)
$$xy - yz \times x^2yz^2$$

 $= xy \cdot x^2yz^2 - yz \cdot x^2yz^2$
 $= x^{2+1} \times y^{1+1} \times z^2 - x^2 \times y^{1+1} \times z^{2+1}$
 $= x^3y^2z^2 - x^2y^2z^3$

(iii)
$$2xyz + 3xy \times -2y^2z$$

 $= 2xyz \cdot -2y^2z + 3xy \cdot -2y^2z$
 $= -4x \times y^{2+1} \times z^{1+1} - 6 \times x \times y^{2+1} \times z$
 $= -4xy^3z^2 - 6xy^3z$

$$(iv) -3xy^{2} + 4x^{2}y \times -xy$$

$$= -3xy^{2} - xy + 4x^{2}y - xy$$

$$= 3x^{2}v^{3} - 4x^{3}v^{2}$$

$$(v) - x^{2}y - 3x^{2}y^{2} \times 4xy$$

$$= -x^{2}y \cdot 4xy - 3x^{2}y^{2} \cdot 4xy$$

$$= -4x^{3}y^{2} - 12x^{3}y^{3}$$

Question 6.

Multiply:

(i)
$$3a + 4b - 5c$$
 and $3a$

(ii)
$$-5xy$$
 and $-xy^2 - 6x^2y$

Solution:

(i)
$$(3a + 4b - 5c) \times 3a$$

= $(3a \times 3a) + (4b \times 3a) - (5c \times 3a)$
= $9a^2 + 12ab - 15ac$

(ii)
$$(-xy^2 - 6x^2y) \times -5xy$$

= $-xy^2 \times -5xy - 6x^2y \times -5xy$
= $5x^2y^3 + 30x^3y^2$

Question 7.

Multiply:

(i)
$$x + 2$$
 and $x + 10$

(ii)
$$x + 5$$
 and $x - 3$

(iii)
$$x - 5$$
 and $x + 3$

(iv)
$$x - 5$$
 and $x - 3$

(v)
$$2x + y$$
 and $x + 3y$

(vi)
$$(3x - 5y)$$
 and $(x + 6y)$

(vii)
$$(x + 9y)$$
 and $(x - 5y)$

(viii)
$$(2x + 5y)$$
 and $(2x + 5y)$

(i)
$$(x + 2) \cdot (x + 10)$$

= $x \cdot (x + 2) + 10 \cdot (x + 2)$
= $x^2 + 2x + 10x + 20$
= $x^2 + 12x + 20$

(ii)
$$(x + 5) \cdot (x - 3)$$

= $x \cdot (x + 5) - 3 \cdot (x + 5)$
= $x^2 + 5x - 3x - 15$
= $x^2 + 2x - 15$

(iii)
$$(x-5)\cdot(x+3) = x\cdot(x-5) + 3\cdot(x-5)$$

= $x^2 - 5x + 3x - 15$
= $x^2 - 2x - 15$

(iv)
$$(x-5)\cdot(x-3) = x\cdot(x-5) - 3\cdot(x-5)$$

= $x^2 - 5x - 3x + 15$
= $x^2 - 8x + 15$

(v)
$$(2x + y) \cdot (x + 3y)$$

= $x \cdot (2x + y) + 3y \cdot (2x + y)$
= $2x^2 + xy + 6xy + 3y^2$
= $2x^2 + 7xy + 3y^2$

$$(vi) (3x - 5y) \cdot (x + 6y)$$

$$= x \cdot (3x - 5y) + 6y (3x - 5y)$$

$$= 3x^2 - 5xy + 18xy - 30y^2$$

$$= 3x^2 + 13xy - 30y^2$$

(vii)
$$(x + 9y) \cdot (x - 5y)$$

$$= x \cdot (x + 9y) - 5y (x + 9y)$$

$$= x^2 + 9xy - 5xy - 45y^2$$

$$= x^2 + 4xy - 45y^2$$

(viii)
$$(2x + 5y) \cdot (2x + 5y)$$

= $2x \cdot (2x + 5y) + 5y \cdot (2x + 5y)$
= $4x^2 + 10xy + 10xy + 25y^2$
= $4x^2 + 20xy + 25y^2$

Question 8.

Multiply:

(i)
$$3abc$$
 and $-5a^2b^2c$

(ii)
$$x-y+z$$
 and $-2x$

(iii)
$$2x - 3y - 5z$$
 and $-2y$

(iv)
$$-8xyz + 10x^2yz^3$$
 and xyz

(v)
$$xyz$$
 and $-13xy^2z + 15x^2yz - 6xyz^2$

(vi)
$$4abc - 5a^2bc - 6ab^2c$$
 and $-2abc^2$

(i)
$$3abc \times -5a^2b^2c$$

= $3 \cdot -5 \cdot a^{1+2} \cdot b^{1+2} \cdot c^{1+1}$
= $-15a^3b^3c^2$

(ii)
$$(x-y+z) - 2x$$

= $-2x^2 + 2xy - 2xz$

(iii)
$$2x - 3y - 5z - 2y$$

= $-4xy + 6y^2 + 10yz$

$$(iv) -8xyz + 10x^2yz^3 \cdot xyz = -8x^2y^2z^2 + 10x^3y^2z^4$$

$$(v) -13xy^2z + 15x^2yz - 6xyz^2 \cdot xyz$$

= -13x²y³z² + 15x³y²z² - 6x²y²z³

(vi)
$$4abc - 5a^2bc - 6ab^2c - 2abc^2$$

= $-8a^2b^2c^3 + 10a^3b^2c^3 + 12a^2b^3c^3$

Question 9.

Find the product of:

(i)
$$xy - ab$$
 and $xy + ab$

(ii)
$$2abc - 3xy$$
 and $2abc + 3xy$

(iii)
$$a+b-c$$
 and $2a-3b$

(iv)
$$5x - 6y - 7z$$
 and $2x + 3y$

(v)
$$5x - 6y - 7z$$
 and $2x + 3y + z$

(vi)
$$2a + 3b - 4c$$
 and $a - b - c$

(i)
$$(xy - ab) \cdot (xy + ab)$$

= $xy \cdot (xy - ab) + ab (xy - ab)$
= $x^2y^2 - abxy + abxy - a^2b^2$
= $x^2y^2 - a^2b^2$

(ii)
$$(2abc - 3xy) \cdot (2abc + 3xy)$$

= $2abc \cdot (2abc - 3xy) + 3xy \cdot (2abc - 3xy)$
= $4a^2b^2c^2 - 6abcxy + 6abcxy - 9x^2y^2$
= $4a^2b^2c^2 - 9x^2v^2$

(iii)
$$(a + b - c) \cdot (2a - 3b)$$

= $2a \cdot (a + b - c) - 3b \cdot (a + b - c)$
= $2a^2 + 2ab - 2ac - 3ab - 3b^2 + 3bc$
= $2a^2 - ab - 2ac - 3b^2 + 3bc$
= $2a^2 - ab - 2ac + 3bc - 3b^2$

(iv)
$$(5x - 6y - 7z) \cdot (2x + 3y)$$

= $2x \cdot (5x - 6y - 7z) + 3y \cdot (5x - 6y - 7z)$
= $10x^2 - 12xy - 14xz + 15xy - 18y^2 - 21yz$
= $10x^2 + 3xy - 14xz - 18y^2 - 21yz$

(v)
$$(5x - 6y - 7z) \cdot (2x + 3y + z)$$

 $= 2x \cdot (5x - 6y - 7z) + 3y \cdot (5x - 6y - 7z)$
 $+ z \cdot (5x - 6y - 7z)$
 $= 10x^2 - 12xy - 14xz + 15xy - 18y^2$
 $- 21yz + 5xz - 6yz - 7z^2$
 $= 10x^2 - 12xy + 15xy - 14xz + 5xz$
 $- 18y^2 - 21yz - 6yz - 7z^2$
 $= 10x^2 + 3xy - 9xz - 18y^2 - 27yz - 7z^2$
(vi) $(2a + 3b - 4c) \cdot (a - b - c)$
 $= a \cdot (2a + 3b - 4c) - b \cdot (2a + 3b - 4c)$
 $- c \cdot (2a + 3b - 4c)$
 $= 2a^2 + 3ab - 4ac - 2ab - 3b^2 + 4bc$
 $- 2ac - 3bc + 4c^2$
 $= 2a^2 + 3ab - 2ab - 4ac - 2ac - 3b^2$
 $+ 4bc - 3bc + 4c^2$
 $= 2a^2 + ab - 6ac - 3b^2 + bc + 4c^2$

Question 1.

Divide:

- (i) 3a by a
- (ii) 15x by 3x
- (iii) 16m by 4
- (iv) $20x^2$ by 5x
- (v) $30p^2$ by $10p^2$
- (vi) $14a^3b^3$ by $2a^2$
- (vii) $18pqr^2$ by 3pq
- (viii) 100 by 50b

Solution:

(i)
$$3a \div a = \frac{3 \times a}{a} = 3$$

(ii)
$$15x \div 3x = \frac{3 \times 5 \times x}{3 \times x} = 5$$

(iii)
$$16m \div 4 = \frac{4 \times 4 \times m}{4} = 4m$$

(iv)
$$20x^2 \div 5x = \frac{4 \times 5 \times x^{2-1}}{5} = 4x$$

(v)
$$30p^2 \div 10p^2 = \frac{3 \times 10p^2}{10p^2} = 3$$

(vi)
$$14a^3b^3 \div 2a^2 = \frac{2 \times 7a^{3-2}b^3}{2} = 7ab^3$$

(vii)
$$18pqr^2 \div 3pq = \frac{3 \times 6. p \times q \times r^2}{3 \times p \times q} = 6r^2$$

(viii)
$$100 \div 50b = \frac{2 \times 50}{50 \times b} = \frac{2}{b}$$

Question 2.

Simplify:

(i)
$$2x^5 \div x^2$$

(ii)
$$6a^8 \div 3a^3$$

(iii)
$$20xy \div - 5xy$$

$$(iv) - 24a^2b^2c^2 \div 6ab$$

$$(v) - 5x^2y \div xy^2$$

$$(vi) \ 40p^3q^4r^5 \div 10p^3q$$

$$(vii) - 64x^4y^3z \div 4x^3y^2z$$

$$(viii) 35xy^5 \div 7x^2y^4$$

(i)
$$2x^5 \div x^2 = \frac{2x^5}{x^2}$$

= $2x^{5-2} = 2x^3$

(ii)
$$6a^8 + 3a^3 = \frac{2 \times 3 \times a^{8-3}}{3} = 2a^5$$

(iii)
$$20xy \div -5xy = \frac{4 \times 5 \times x \times y}{-5 \times x \times y} = -4$$

$$(iv) - 24a^{2}b^{2}c^{2} \div 6ab$$

$$= \frac{-4 \times 6 \times a^{2-1}b^{2-1}c^{2}}{6} = -4abc^{2}$$

$$(v) - 5x^2y \div xy^2 = \frac{-5x^{2-1}}{y^{2-1}} = -\frac{5x}{y}$$

(vi)
$$40p^3q^4r^5 \div 10p^3q$$

= $\frac{4 \times 10 \times p^{3-3} \cdot q^{4-1} \cdot r^5}{10}$
= $4 \times q^{4-1} \times r^5 = 4q^3 r^5$

$$(vii) - 64x^4y^3z \div 4x^3y^2z$$

$$= \frac{4 \times 4 \times 4 \times x^4 \times y^3 \times z}{4 \times x^3 \times y^2 \times z}$$

$$= -16x^{4-3}y^{3-2} = -16xy$$

(viii)
$$35xy^5 \div 7x^2y^4$$

$$= \frac{5 \times 7 \times y^{5-4}}{7 \times x^{2-1}} = \frac{5y}{x}$$

Question 3.

Divide:

(i)
$$-\frac{3m}{4}$$
 by $2m$

(ii)
$$-15p^6q^8$$
 by $-5p^6q^7$

(iii)
$$-21m^5n^7$$
 by $14m^2n^2$

(iv)
$$36a^4x^5y^6$$
 by $4x^2a^3y^2$

(v)
$$20x^3a^6$$
 by $5xy$

(vi)
$$\frac{28a^2b^3}{c^2}$$
 by $4abc$

(vii)
$$\frac{2a^2}{9h^2}$$
 by $\frac{3b}{2a}$

(viii)
$$\frac{-5.5x^2}{y}$$
 by $\frac{11x}{y}$

(ix)
$$\frac{64x^2y^2}{z^2}$$
 by $\frac{8xy}{z}$

(i)
$$-\frac{3m}{4} \div 2m = \frac{-3 \times m}{4 \times 2 \times m} = -\frac{3}{8}$$

(ii)
$$-15p^6q^8 \div -5p^6q^7 = \frac{-5 \times 3 \times p^6 \times q^8}{-5 \times p^6 \times q^7}$$

$$=3q^{8-7}=3q$$

$$(iii) - 21m^5n^7 \div 14m^2n^2$$

$$=\frac{-3\times7\times m^{5-2}n^{7-2}}{14}=-\frac{3}{2}m^3n^5$$

(iv)
$$36a^4x^5y^6 \div 4x^2a^3y^2$$

$$=\frac{4\times 9a^{4-3}\times x^{5-2}\times y^{6-2}}{4}=9ax^3y^4$$

(v)
$$20x^3a^6 \div 5xy = \frac{4 \times 5x^3a^6}{5xy}$$

$$= \frac{4 \times 5 \times x^{3-1} \times a^6}{5xy} = \frac{4x^2a^6}{y}$$

$$(vi) \ \frac{28a^2b^3}{c^2} \div 4abc$$

$$=\frac{4\times7\times a^{2-1}\times b^{3-1}}{4\times c^{2+1}}=\frac{7ab^2}{c^3}$$

$$(vii) \ \ \frac{2a^2}{9b^2} \div \frac{3b}{2a} = \frac{2a^2}{9b^2} \times \frac{2a}{3b}$$

$$=\frac{2\times2\times a^{2+1}}{9\times3b^{2+1}}=\frac{4a^3}{27b^3}$$

(viii)
$$\frac{-5.5x^2}{y} \div \frac{11x}{y} = \frac{-55x^2}{10y} \times \frac{y}{11x}$$
$$= -\frac{5x}{10} = -0.5x$$

(ix)
$$\frac{64x^{2}y^{2}}{z^{2}} \div \frac{8xy}{z}$$

$$= \frac{8 \times 8 \times x^{2} \times y^{2}}{z^{2}} \times \frac{z}{8 \times x \times y}$$

$$= \frac{8x^{2-1}y^{2-1}}{z^{2-1}} = \frac{8xy}{z}$$

Question 4.

Simplify:

(i)
$$\frac{-15m^5n^2}{-3m^5}$$
 (ii) $\frac{35x^4y^2}{-15x^2y^2}$

$$(iii)\frac{-24x^6y^2}{6x^6y}$$

Solution:

(i)
$$\frac{-15m^5n^2}{-3m^5} = \frac{-3 \times 5 \times m^5 \times n^2}{-3 \times m^5} = 5n^2$$

(ii)
$$\frac{35x^4y^2}{-15x^2y^2} = \frac{-5 \times -7 \times x^4 \times y^2}{3 \times -5 \times x^2 \times y^2}$$
$$= \frac{-7x^{4-2}}{3} = \frac{7x^2}{3}$$

(iii)
$$\frac{-24x^{6}y^{2}}{6x^{6}y} = \frac{-4 \times 6 \times x^{6} \times y^{2}}{6 \times x^{6} \times y}$$
$$= -4y^{2-1} = -4y$$

Question 5.

Divide:

(i)
$$9x^3 - 6x^2$$
 by $3x$

(ii)
$$6m^2 - 16m^3 + 10m^4$$
 by $-2m$

(iii)
$$15x^3y^2 + 25x^2y^3 - 36x^4y^4$$
 by $5x^2y^2$

(iv)
$$36a^3x^5 - 24a^4x^4 + 18a^5x^3$$
 by $-6a^3x^3$.

(i)
$$9x^3 - 6x^2$$
 by $3x$

$$= \frac{9x^3 - 6x^2}{3x} = \frac{9x^3}{3x} - \frac{6x^2}{3x}$$

$$= 3x^3 - 1 - 2x^2 - 1$$

$$= 3x^2 - 2x$$

(ii)
$$6m^2 - 16m^3 + 10m^4$$
 by $-2m$

$$=\frac{6m^2-16m^3+10m^4}{-2m}$$

$$= \frac{6m^2}{-2m} - \frac{6m^3}{-2m} + \frac{10m^4}{-2m}$$
$$= -3m^2 - 1 + 8m^3 - 1 - 5m^4 - 1$$
$$= -3m + 8m^2 - 5m^3$$

(iii)
$$15x^3y^2 + 25x^2y^3 - 36x^4y^4$$
 by $5x^2y^2$

$$=\frac{15x^3y^2 + 25x^2y^3 - 36x^4y^4}{5x^2y^2}$$

$$=\frac{15x^3y^2}{5x^2y^2}+\frac{25x^2y^3}{5x^2y^2}-\frac{36x^4y^4}{5x^2y^2}$$

$$= 3x^{3-2} \cdot y^{2-2} + 5x^{2-2} \cdot y^{3-2}$$

$$= \frac{36}{5}x^{4-2} \cdot y^{4-2}$$

$$= 3x^{1}y^{0} + 5x^{0}y^{1} - \frac{36}{5}x^{2}y^{2}$$

$$= 3x + 5y - \frac{36}{5}x^{2}y^{2} \quad (\because x^{0} \text{ or } y^{0} = 1)$$

$$(iv) \quad 36a^{3}x^{5} - 24a^{4}x^{4} + 18a^{5}x^{3} \text{ by } -6a^{3}x^{3}$$

$$= \frac{36a^{3}x^{5} - 24a^{4}x^{4} + 18a^{5}x^{3}}{-6a^{3}x^{3}}$$

$$= \frac{36a^{3}x^{5} - 24a^{4}x^{4} + 18a^{5}x^{3}}{-6a^{3}x^{3}}$$

$$= \frac{36a^{3}x^{5} - 24a^{4}x^{4} + 18a^{5}x^{3}}{-6a^{3}x^{3}}$$

$$= -6a^{3}x^{5} - 3x^{5} - 3x^{5} + 4a^{5}x^{5} - 3x^{5} - 3x^$$