Perimeter and Area of Plane Figures

IMPORTANT POINTS

- **1. Perimeter:** It is the length of the boundry of the given figure.
- (i) Perimeter of a triangle = Sum of its three sides.
- (ii) Perimeter of rectangle = 2 (length + breadth)
- (iii) Perimeter of square = $4 \times \text{side}$.
- **2. Area:** Area is the measure of surface of the plane covered by a closed plane figure. In other words, we can say that area of a closed plane figure is the measure of its interior region.
- (i) Area of rectangle = length x breadth
- (ii) Area of square = $(side)^2$.
- 3. Units of measurement of perimeter and area:
- (i) Perimeter is measured in centimetre (cm) metre (m) or millimeter (mm).
- (ii) Area is measured in square mm, square cm or square metre.

EXERCISE 32 (A)

Question 1.

What do you understand by a plane closed figure? Solution:

Any geometrical plane figure bounded by lines (straight or curved) in a plane is called a plane closed figure.

Each of the following figures is a plane closed figure.

Question 2.

The interior of a figure is called region of the figure. Is this statement true? Solution:

Yes. The interior of the figure alongwith its boundary is called region of the figure

Question 3.

Find the perimeter of each of the following closed figures :

(i) Required perimeter

(ii) Required perimeter

$$= AB + AC + CD + DG + BF + EF + EH + GH$$

= 20 + 4 + 8 + 20 + 4 + 8 + 20 + 4 = 88 cm

Question 4.

Find the perimeter of a rectangle whose:

- (i) length = 40 cm and breadth = 35 cm
- (ii) length = 10 m and breadth = 8 m
- (iii) length = 8 m and breadth = 80 cm
- (iv) length = 3.6 m and breadth = 2.4 m Solution:
- (i) length = 40 cm and breadth = 35 cm
- ∴Perimeter = 2 (length + breadth)
- = 2 (40 cm + 35 cm)
- $= 2 \times 75 \text{ cm}$
- $= 150 \text{ cm} = \frac{150}{100}$
- $= 1.5 \, \text{m}$
- (ii) length = 10 m and breadth = 8 m

```
∴Perimeter = 2 (length + breadth)

= 2 (10 m + 8 m)

= 2 x 18 m = 54 m

(iii) length = 8 m and

breadth = 80 cm

Length = 8 m

Breadth = 80 cm=\frac{80}{100} m = 0.8 m

∴ Perimeter = 2 (length + breadth)

= 2 (8 m + 0.8m)

= 2 x 8.8 m = 17.6 m

(iv) length = 3.6 m and breadth = 2.4 m

∴ Perimeter = 2 (length + breadth)

= 2 (3.6 m + 2.4 m)

= 2 x 6 m = 12 m
```

Question 5.

If P denotes perimeter of a rectangle, I denotes its length and b denotes its breadth, find :

- (i) I, if P = 38cm and b = 7cm
- (ii) b, if P = 3.2m and I = 100 cm
- (iii) P, if I = 2 m and b = 75cm Solution:

(i)
$$l$$
, if P = 38cm and b = 7cm

Length,
$$(l) = \frac{P}{2} - b$$

$$=\frac{38}{2}-7cm$$

$$= 19 \text{ cm} - 7 \text{cm} = 10 \text{ cm Ans.}$$

(ii)
$$b$$
, if $P = 3.2m$ and $l = 100 cm$

$$\left[\because 100cm = \frac{100}{100}m = 1m \right]$$

Breadth,
$$(b) = \frac{P}{2} - l$$

$$=\frac{3.2}{2} \text{ m} - 1 \text{m}$$

$$= 1.6 \text{ m} - 1 \text{m} = 0.6 \text{ Ans}.$$

(iii) P, if
$$l = 2 m$$
 and $b = 75 cm$

$$\left[\because b = 75cm \frac{75}{100} m = 0.75 \right]$$

$$\therefore$$
 Perimeter = 2 $(l + b)$

$$= 2 (2 + 0.75)$$

$$= 2 (2.75)$$

Question 6.

Find the perimeter of a square whose each side is 1.6 m. Solution:

$$\therefore$$
 its perimeter = 4 x side

$$= 4 \times 1.6 \text{ m}$$

$$= 6.4 \text{ m}$$

Question 7.

Find the side of the square whose pe-rimeter is 5 m.

Perimeter of the square = 5 m

$$\therefore \text{ Its side} = \frac{\text{Perimeter}}{4}$$

$$=\frac{5}{4}$$
 m = 1.25 m Ans.

Question 8.

A square field has each side 70 m whereas a rectangular field has length = 50 m and breadth = 40 m. Which of the two fields has greater perimeter and by how much?

Solution:

Perimeter of the square field = $4 \times \text{side} = 4 \times 70 \text{m} = 280 \text{m}$

Perimeter of rectangular field = 2 (length + breadth)

- = 2 (50 m + 40 m)
- $= 2 \times 90 \text{ m}$
- = 180 m
- ∴Square field has greater perimeter by 280 m 180 m = 100 m

Question 9.

A rectangular field has length = 160m and breadth = 120 m. Find :

- (i) the perimeter of the field.
- (ii) the length of fence required to enclose the field.
- (iii) the cost of fencing the field at the rate of ? 80 per metre.

Solution:

Given = length = 160 m, breadth = 120m

- (i) The Perimeter of the field = 2(I + b)
- = 2 (160 m + 120 m)
- $= 2 \times 280$
- = 560 m
- (ii) The length of fence required to enclose the field = The perimeter of the rectan-gular field
- = 560 m
- (iii) The cost of fencing the field = Length of fence x Rate of fence
- = 560 m x ₹80 per metre
- = ₹44, 800

Question 10.

Each side of a square plot of land is 55 m. Find the cost of fencing the plot at the rate of ₹32 per metre.

- : Perimeter of square field = $4 \times 10^{\circ}$ x its side = 4×55 m
- :Length of required fencing = 220 m Now, the cost of fencing = its length x its rate

```
= 220 m x ₹32 per metre?
```

= ₹7040

Question 11.

Each side of a square field is 70 cm. How much distance will a boy walk in order to make?

- (i) one complete round of this field?
- (ii) 8 complete rounds of this field?

Solution:

(i) Distance covered by the boy to make one complete round of the field.

Perimeter of the field : $4 \times \text{ its side} = 4 \times 70 = 280 \text{ m}$

(ii) Distance covered by the boy to make 8 complete rounds of this field.

 $= 280 \text{ m} \times 8 \text{ m} = 2240 \text{ m}$

Question 12.

A school playground is rectangular in shape with length = 120 m and breadth = 90 m. Some school boys run along the boundary of the play-ground and make 15 complete rounds in 45 minutes. How much distance they run during this period. Solution:

Length of the rectangular playground = 120 mBreadth of the rectangular playground = 90 m

 \therefore Perimeter of the rectangular ground = 2(I + b)

= 2(120 + 90) m = 420 m

Thus, in one complete round, boys covers a distance of = 420 m

∴Distance covered in 15 complete rounds = 420 m x 15 = 6300 m

Question 13.

Mohit makes 8 full rounds of a rect-angular field with length = 120 m and breadth = 75 m.

John makes 10 full rounds of a square field with each side 100 in. Find who covers larger distance and by how much? Solution:

Mohit

Length of the rectangular field = 120

Breadth of the rectangular field = 75 m

- \therefore Distance covered in one round (perim-eter) = 2(1 + b)
- = 2(120 + 75) = 390 m Hence, distance covered in 8 rounds = 390 x 8 m = 3120 m

John

Side of the field = 100 m

∴Distance covered in one round = 4 x a = 4 x 100 = 400 m

Hence, Distance covered in 10 rounds = 400 x 10 m = 400 m

John a covers greater distance then Mohit by = (4000-3120) m = 880 m

Question 14.

The length of a rectangle is twice of its breadth. If its perimeter is 60 cm, find its

length.

Solution:

```
Let the breadth of the field = x cm
\therefore its length = 2x
and, its perimeter = 2 \times (length + breadth)
= 2 \times (2x + x)
= 2(3x)
= 6x cm
Perimeter = 60 \text{ cm}
```

$$\Rightarrow$$
 60 cm = 6x cm
 \Rightarrow x = $\frac{60}{6}$ = 10 cm

$$\Rightarrow$$
 x = $\frac{6}{6}$ = 10 cm

∴Breadth =
$$x = 10$$
 cm

Length =
$$2x = 2 \times 10 = 20 \text{ cm}$$

Question 15.

Find the perimeter of:

- (i) an equilateral triangle of side 9.8 cm.
- (ii) an isosceles triangle with each equal side = 13 cm and the third side = 10 cm.
- (iii) a regular pentagon of side 8.2 cm.
- (iv) a regular hexagon of side 6.5 cm.

Solution:

- (i) The perimeter of equilateral triangle = $3 \times \text{side}$
- $= 3 \times 9.8 \text{ cm}$
- = 29.4 cm
- (ii) Required perimeter = 13 cm + 13 cm + 10 cm
- = 36 cm
- (iii) Perimeter of given pentagon = $5 \times \text{side} = 5 \times 8.2 \text{ cm}$
- (iv) Perimeter of given hexagon = $6 \times 6.5 \text{ cm}$
- = 39 cm

Question 16.

An equilateral triangle and d square has equal perimeter. If side of the triangle is 9.6 cm ; what is the length of the side of the square?

Solution:

Perimeter of equilateral triangle = Perimeter of square Side of triangle = 9.6 cm

- ∴Perimeter of triangle = 3 x side
- $= 3 \times 9.6 \text{ cm} = 28.8 \text{ cm}$
- > Perimeter of the square = 28.8 cm
- 4 x the side of square = 28.8 cm
- \Rightarrow The side of the square = $\frac{28.8}{4}$ cm
- = 7.2 cm Ans.

Question 17.

A rectangle with length = 18 cm and breadth = 12 cm has same perimeter as that

of a regular pentagon. Find the side of the pentagon.

Solution:

Length of rectangle = 18 cm

Breadth of rectangle = 12 cm

 \therefore Perimeter of rectangle = 2 x (I + b)

 $= 2 \times (18+12)$

 $= 2 \times 30 = 60 \text{ cm}$

: Perimeter, of rectangle = Perimeter of pentagon

60 cm = 5 x side

side = $\frac{60}{5}$ cm = 12 cm

∴Side of the pentagon = 12 cm Ans.

Question 18.

A regular pentagon of each side 12 cm has same perimeter as that of a regular hexagon. Find the length of each side of the hexagon.

Solution:

Perimeter of regular pentagon = 5×10^{-5} x length of the side

 $= 5 \times 12 \text{ cm} = 60 \text{ cm}$

Clearly, perimeter of the given pentagon = 60 cm

 \Rightarrow 6 x side of hexagon = 60 cm 60

 \Rightarrow side of hexagon = $\frac{60}{6}$ cm = 10 cm

Question 19.

Each side of a square is 45 cm and a rectangle has length 50 cm. If the perimeters of both (square and rectangle) are same, find the breadth of the rectangle. Solution:

Side of a square = 45 cm

 \therefore Perimeter = $4a = 4 \times 45$ cm = 180 cm

or Perimeter of rectangle = 180 cm

Length of rectangle = 50 cm

$$\therefore \text{ Breadth} = \frac{P}{2} - l = \frac{180}{2} - 50$$
$$= 90 - 50 = 40 \text{ Ans.}$$

Question 20.

A wire is bent in the form of an equilateral triangle of each side 20 cm. If the same wire is bent in the form of a square, find the side of the square. Solution:

- :Each side of the given equilateral triangle = 20 cm
- : Perimeter of the square = Perimeter of equilateral triangle

- \Rightarrow 4 x side of square = 60 cm
- \Rightarrow The side of the square = $\frac{60}{4}$
- =15 cm

EXERCISE 32 (B)

Question 1.

Find the area of a rectangle whose:

- (i) length = 15 cm breadth = 6.4 cm
- (ii) Length = 8.5 m breadth = 5 m
- (iii) Length = 3.6 m breadth = 90 cm
- (iv) Length = 24 cm breadth =180 mm Solution:
- (i) length = 15 cm and breadth = 6.4 cm
- \Rightarrow Area of the rectangle = length × breadth = 15 cm × 6.4 cm
 - $= 96 \text{ cm}^2$
- (ii) Length = 8.5 m and breadth = 5 m
- \Rightarrow Area of the rectangle = length × breadth = 8.5 m × 5 m
 - $= 42.5 \text{ m}^2$
- (iii) Length = 3.6 m and breadth = 90 cm
- \Rightarrow Area of the rectangle = length × breadth = 3.6 m × 0.9 m

[: 90 cm =
$$\frac{90}{100}$$
 m = 0.9 m]

- $= 3.24 \text{ m}^2$
- (iv) Length = 24 cm and breadth = 180 mm
- \Rightarrow length = 24 cm

breadth = 180 mm =
$$\frac{180}{10}$$
 cm = 18 cm

- ⇒ Area of the rectangle = length × breadth
 - $= 24 \text{ cm} \times 18 \text{ cm}$
 - $= 432 \text{ cm}^2$

Question 2.

Find the area of a square, whose each side is:

- (i) 7.2 cm
- (ii) 4.5 m
- (iii) 4.1 cm

(i) 7.2 cm

Area of the square = $(side)^2 = (7.2 \text{ cm})^2 = 7.2 \text{ cm} \times 7.2 \text{ cm} = 51.84 \text{ cm}^2$

(ii) 4.5 m

Area of the square = $(side)^2 = (4.5 \text{ m})^2 = 4.5 \text{ m} \times 4.5 \text{ m} = 20.25 \text{ m}^2$

(iii) 4.1 cm

Area of the square = $(side)^2 = (4.1 \text{ cm})^2 = 4.1 \text{ cm x } 4.1 \text{ cm} = 16.81 \text{ cm}^2$

Question 3.

If A denotes area of a rectangle, I represents its length and b represents its breadth, find .

- (i) I, if $A = 48 \text{ cm}^2$ and b = 6 cm
- (ii) b, if $A = 88 \text{ m}^2$ and I = 8m

Solution:

(i) l, if A = 48 cm² and b = 6 cm

$$l = \frac{A}{b}$$
 [: $A = l \times b \Rightarrow l = \frac{A}{b}$]

$$\Rightarrow l = \frac{48cm^2}{6cm} = 8 \text{ cm}$$

(ii) b, if A = 88 m² and l = 8m

$$b = \frac{A}{l} \qquad [\because A = l \times b \Rightarrow b = \frac{A}{l}]$$

$$\Rightarrow b = \frac{88cm^2}{8cm} = 11 \text{ m}$$

Question 4.

Each side of a square is 3.6 cm; find its

- (i) perimeter
- (ii) area.

Solution:

- (i) Perimeter = 4 x side
- $= 4 \times 3.6 \text{ cm} = 14.4 \text{ cm}$
- (ii) Area = $(side)^2$
- $= (3.6 \text{ cm})^2$
- $= 12.96 \text{ cm}^2$

Question 5.

The perimeter of a square is 60 m, find :

- (i) its each side its area
- (ii) its new area obtained on increasing
- (iii) each of its sides by 2 m.

```
Perimeter of a square = 60 m

(i) Perimeter of a square = 4 x side

60 \text{ m} = 4 \text{ x side}

\frac{60}{4} = \text{side } 4

\therefore \text{side} = 15 \text{ m}

(ii) Area of square = (\text{side})^2 = (15 \text{ m})^2

= 15 m x 15 m

= 225 m<sup>2</sup>

(iii) Increased each side = 2 m

Side of square = 15 m

New length of side = (2m + 15m)

= 17m

\therefore \text{New Area of square} = (17m)^2 = 17m \times 17m = 289 \text{ m}^2
```

Question 6.

Each side of a square is 7 m. If its each side be increased by 3 m, what will be the increase in its area.

Solution:

Each side of square = 7 m

∴Area of square = (side)²= (7 m)²

 $= 7m \times 7m = 49m^2$

∵ Side increased by 3 m

∴Total length of side will be = 3 m + 7 m = 10 m

:Area of square = $(10 \text{ m})^2$ = 10m x 10 m = 100 m²

∴Increase in area = $100 \text{ m}^2 - 49 \text{ m}^2 = 51 \text{ m}^2$

Question 7.

The perimeter of a square field is numerically equal to its area. Find each side of the square.

Solution:

Perimeter of square = Area of square

$$\therefore 4a = a^2$$

$$\Rightarrow \frac{a^2}{a} = 4$$

$$\Rightarrow a = 4$$

: each side of square = 4

Question 8.

A rectangular piece of paper has area = 24 cm² and length = 5 cm. Find its perimeter.

: Area of rectangle = length × breadth

$$\Rightarrow$$
 24 cm² = 5 cm × breadth

$$\Rightarrow$$
 breadth = $\frac{24cm^2}{5cm}$ = 4.8 cm

and, perimeter =
$$2 \times (l + b)$$

$$= 2 \times (5 \text{ cm} + 4.8 \text{ cm})$$

$$= 2 \times 9.8$$
 cm

= 19.6 cm Ans.

Question 9.

Find the perimeter of a rectangle whose area = 2600 m^2 and breadth = 50 m. Solution:

and breadth =
$$50 \text{ m}$$

$$\therefore \text{ its length} = \frac{\text{Area}}{\text{Breadth}}$$

$$= \frac{2600 \text{cm}^2}{50 \text{cm}} = 52 \text{ cm}$$

⇒ Perimeter of the rectangle

$$= 2 \times (length + breadth)$$

$$= 2 \times (52 \text{ cm} + 50 \text{ cm})$$

$$= 2 \times 102 = 204$$
 cm

Question 10.

What will happen to the area of a rectangle, if its length and breadth both are trebled?

Solution:

Let the original length of the rectangle = I and its original breadth = b

 \therefore its original area = length x breadth i.e A = I - b i. e.

Since,

Increased length -=3l

and, increased breadth = 3b

$$\therefore$$
 New area = 3l x 3b = 9 x l x b [\because A = l x b]

⇒ Area of the new rectangle = 9 times than area of original rectangle

Question 11.

Length of a rectangle is 30 m and its breadth is 20 m. Find the increase in its area if its length is increased by 10 m and its breadth is doubled. Solution:

Length of a rectangle (I) = 30 m, Breadth of the rectangle (b) = 20 m Area of rectangle = I x b = $30 \times 20 = 600 \text{ m2}$ Since, the length its increased by 10 m and breadth is doubled \therefore New length (I) = (30 + 10) m = 40 m and new breadth = (20×2) m = 40 m \therefore New area = I x b = 40×40 m2 = 1600 m2 Hence, the increase in the area = (1600 - 600) m2 = 1000 m2

Question 12.

The side of a square field is 16 m. What will be increase in its area, if:

- (i) each of its sides is increased by 4 m
- (ii) each of its sides is doubled.

Solution:

- Side of the square field (a) = 16 m
- \therefore Area of the square field = $(a)^2$

$$= 16 \times 16 \text{ m}^2 = 256 \text{ m}^2$$

- (i) Each of its sides increased by 4 m
- :. New side = (16 + 4) m = 20 m
- ... New area of the square field = $(a)^2$ = $20 \times 20 \text{ m}^2 = 400 \text{ m}^2$
- (ii) Each of its side is doubled
- \therefore New side = 16 × 2 = 32 m
- \therefore New area of the square field = $(a)^2$

$$= 32 \times 32 \text{ m}^2 = 1024 \text{ m}^2$$

Question 13.

Each rectangular tile is 40 cm long and 30 cm wide. How many tiles will be required to cover the floor of a room with length = 4.8 m and breadth = 2.4 m.

Area of each rectangular tiles

$$= 40 \text{ cm} \times 30 \text{ cm}$$

$$= 0.4 \text{ m} \times 0.3 \text{ m} \text{ tiles} = 0.12 \text{ m}^2$$

$$\Rightarrow$$
 Area to be covered by the tiles = 4.8 m
 \times 2.4 m = 15.36 m²

:. Required number of tiles

$$= \frac{\text{Area to be covered by tiles}}{\text{Area of each tile}}$$

$$= \frac{15.36 \text{ m}^2}{0.12} = 128$$

Question 14.

Each side of a square tile is 60 cm. How many tiles will be required to cover the floor of a hall with length = 50 m and breadth = 36 m. Solution:

Area of each square tile = (side)2

$$= (60 \text{ cm})^2 = (0.6 \text{ m})^2$$

$$= 0.6 \text{ m} \times 0.6 \text{ m} = 0.36 \text{ m}^2$$

And, area to be covered by the tiles =

length× breadth
$$= 50 \text{ m} \times 36 \text{ m}$$

$$= 1800 \text{ m}^2$$

∴ Required no. of tiles

$$= \frac{\text{Area to be covered by tiles}}{\text{Area of each tile}}$$

$$= \frac{1800 \text{ m}^2}{0.36 \text{ m}^2} = 5000.$$

Question 15.

The perimeter of a square plot = 360 m. Find :

- (i) its area.
- (ii) cost of fencing its boundary at the rate of ₹ 40 per metre.
- (iii) cost of levelling the plot at ₹60 per square metre.

Solution:

Given, perimeter of square plot = 360 m

∵ Perimeter of the square = 4 x its side

```
∴4 x side of square = 360 m
```

- \Rightarrow side of the square = $\frac{360m}{4}$ = 90 m
- (i) The area of the square field = (side)²
- $= (90 \text{ m})^2$
- $= 90 \text{ m} \times 90 \text{ m}$
- $= 8100 \text{ m}^2$

Cost of fencing at ₹ 40 per metre

- = 8100 m2 x ₹ 40 per metre
- **=** ₹ 324000

Cost of levelling at₹ 60 per m²

- = 8100 m² x ₹60 per m²
- **=** ₹ 486000

Question 16.

The perimeter of a rectangular field is 500 m and its length = 150 m. Find:

- (i) its breadth,
- (ii) its area.
- (iii) cost of ploughing the field at the rate of ₹1.20 per square metre.

Solution:

- (i) Perimeter of a rectangle = 2 x (length + breadth)
- \Rightarrow 500 m = 2x(i50m + breadth)
- \Rightarrow 250 m 150 m = breadth
- ∴breadth = 100 m
- (ii) Area of rectangular field = length x breadth
- $= 150 \text{ m} \times 100 \text{ m} = 15000 \text{ m}^2$
- (iii) Cost of ploughing the field at the rate of
- = ₹1.20 per square m²= area of the field x rate of ploughing = 15000 m² x ₹1.20 per square metre = ₹15000 x 1.20 = ₹18000

Question 17.

The cost of flooring a hall of ₹64 per square metre is ₹2,048. If the breadth of the hall is 5m, find :

- (i) its length.
- (ii) its perimeter.
- (iii) cost of fixing a border of very small width along its boundary at the rate of ₹60 per square metre.

Total cost of flooring the room = ₹2,048
 and, cost of flooring per square metre =

and, cost of flooring per square metre = ₹64

:. Area of the room =

Total cost of flooring cost of flooring per square metre

$$= \frac{2048}{64} \ m^2 = 32 \ m^2$$

$$\Rightarrow$$
 length \times 5 m = 32 m²

$$\Rightarrow length = \frac{32 \text{ m}^2}{5 \text{ m}} = 6.4 \text{ m}$$

(ii) Perimeter =
$$2 \times (length + breadth)$$

$$= 2 \times (6.4 \text{ m} + 5 \text{ m})$$

$$= 2 \times 11.4 \text{ m}$$

$$= 22.8 \text{ m}$$

= 32
$$m^2 \times ₹60$$
 per m^2

Question 18.

The length of a rectangle is three times its breadth. If the area of the rectangle is 1875 sq. cm, find its perimeter.

Let the breadth of a rectangle = x and the length of a rectangle = 3x

$$\therefore$$
 Area of the rectangle = $l \times b$

$$\Rightarrow 1875 \text{ cm}^2 = x \times 3x \qquad \Rightarrow \qquad 3x^2 = 1875$$

$$\Rightarrow x^2 = \frac{1875}{3} \Rightarrow x = \sqrt{625}$$

$$\Rightarrow x = 25 \text{ cm}$$

.. Breadth of a rectangle = 25 cm and length of a rectangle = 3 × 25 cm = 75 cm Now, perimeter of a rectangle = 2(l + b) = 2 (75 + 25) cm

$$= 2 \times 100 \text{ cm} = 200 \text{ cm}$$