Application of Integrals

Area of the region bounded by the curve y = f(x), x-axis, and the lines x = a and x = b (b > a) 1s given by
A= [Dvdx or A= J2f (x)dx
The area of the region bounded by the curve x = g(y), y-axis, and the lines y = ¢ and y = d is given by

A= [Sxdy or A= [8e(y)dx
If a line y = mx + p intersects a curve y = f(x) at x = a and x = b, (b > a), then the area (4) of region bounded
by the curve y = f(x) and the line y = mx + p is

A= ,Ig(yl —¥q)dx, wherey) =mx + p andy5 = f(x)

A=[P[omx + p) — F(x)]dx

If a line y = mx + p intersects a curve x = g(y) at y = c and y = d ,(d > ¢), then the area (4) of region
bounded by the curve x = g(y) and the line y = mx + p 1s

= |¢},{11 — x9)dy, wherex; =

'[( =) —g0)]dy

andwg =g(v)
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Example 1: Find the area of the region in the first and third quadrant enclosed by the x-axis and the line
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Solution: The given equations are
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Substituting ¥ =\ 3% in equation (2), we obtain
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Hence, the line meets the ellipse a b at C b"+3a
first and third quadrant respectively.
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Now, area OCMO =
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a. The area of the region enclosed between two curves y = f{x) and y = g(x) and the linesx =a and x = b is
given by,

rlf':[f{w} —gl(x)]dx, where f(x) zg(x)in[a. b]

JaLf (%) —g(n)1dx + [2g(x) — F(x) ]dx :'
wherea <c <bandf(x) zg(x)infa,c] andf(x) = g(x)infe, b]
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Example 2: Show that region bounded by two parabolas (shown in the figure) y2 = 4gx and x2 = 4by 1s
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Solution:

37 42
The point of intersection of the parabolas y2 — 4ax and x? = 4by are 0 (0, 0) and A'iwﬂb : 4J a’b,

2 2_ _xt s
Here, 7 =403 =y =2 ayfx = £ (x) ang ¥ =47 =7 = 5 =g()
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It can be observed that f{x) > g(x) in L ° @

Therefore, required area of the shaded region
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