
Hydrocarbons

Alkanes:

- General formula is C_nH_{2n+2} .
- Isomerism: Structural isomer → Difference in structure Chain isomer → Difference in chain
- Conformations: The spatial arrangements of atoms which can be converted into one another by rotation around a C–C single bond
 - 1. Sawhorse projections

2. Newman projections

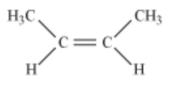
Alkanes:

- General formula is C_nH_{2n+2} .
- Occurence:
 - Methane is the main constituent of marsh gas.
 - Methane is exhaled by animals that feed on food containing cellulose.
 - Methane is found in the intestinal gas of humans and animals.
 - Methane is found in cavities in coal.
- Prepared by:
 - Reduction of unsaturated hydrocarbons
 - Reduction of alkyl halides
 - Wurtz reaction
 - Decarboxylation reaction
 - Kolbe's electrolysis
- Properties
 - Non-polar, colourless and odourless
 - Hydrophobic
 - Combustion reaction produces carbon dioxide
 - Controlled oxidation converts them to alcohols, aldehydes or carboxylic acids
 - Undergo isomerisation in the presence of AlCl₃ and HCl
 - Aromatization reaction takes place at 773 K at 10–20 atmospheric pressure in the presence of the oxides of V, Mo, or Cr supported over alumina
 - On heating to a higher temperature, higher alkanes decompose into lower alkanes or alkenes (**Pyrolysis and cracking**)
 - Alkyl halides can be prepared by substitution reaction of alkanes
- Uses:
 - Preparation of acetylene, formaldehyde, methanol, chloromethane and tetrachloro methane
 - Domestic fuel
 - Preparation of a useful solvent in dry cleaning

Alkenes:

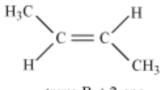
- General formula is C_nH_{2n} .
- Isomerism

1.Position isomer


$${}^{1}_{CH_{2}} = {}^{2}_{CH} - {}^{3}_{CH_{2}} - {}^{4}_{CH_{2}} - {}^{5}_{CH_{3}}$$

$$Pent - 1 - ene$$

$${}^{1}_{CH_{3}} - {}^{2}_{CH} = {}^{3}_{CH} - {}^{4}_{CH_{2}} - {}^{5}_{CH_{3}}$$


$$Pent - 2 - ene$$

- 2. Geometrical isomerism
- *Cis*-isomer: Two identical atoms or groups are on the same side of the double bond

cis-But-2-ene

• *Trans*-isomer: Two identical atoms or groups lie on the opposite side of the double bond

trans-But-2-ene

Alkenes:

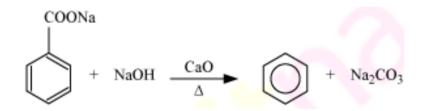
- General formula is C_nH_{2n} .
- Alkenes are unsaturated hydrocarbons containing at least one double bond.
- Carbon-carbon double bond in alkenes consist of one sigma bond and one pi bond.
- Prepared by:
 - Partial reduction of alkynes
 - Dehydrohalogenation by heating alkyl halides with acloholic KOH
 - Dehalogenation by reacting vicinal dihalides with Zn metal
 - Dehydration of alcohols using
 - Concentrated H₂SO₄
 - Heated Al₂O₃

• Properties:

- Colourless, odourless, insoluble in water and fairly soluble in non-polar solvents
- Undergo addition reactions:
 - Addition of hydrogen to form alkanes
 - Addition of halogen to form dihalides
 - Addition of hydrogen halide to form alkyl halides
 - Addition of H₂SO₄
 - Addition of water
- Oxidation of alkenes with
 - Baeyer's reagent converts them to vicinal glycols
 - Acidic KMnO₄ or acidic K₂Cr₂O₇ oxidises them to give ketones or acids (depending upon the nature of alkenes)
- Undergoes ozonolysis to form aldehydes
- Polymerises at high temperature in presence of suitable catalyst
- Undergoes combustion to form a large amount of heat
- Uses:
 - Manufacture of synthetic chemicals, polythene, raw materials for detergents
 - For ripeninng of fruits
 - producing oxy-ethylene

Alkynes

- General formula is CnH_{2n-2}
- They are named as the corresponding alkanes replacing 'ane' by the suffix 'yne'.
- Each carbon atom of ethyne has two *sp* hybridised orbitals.
- Preparation of Ethynes
 - From calcium carbide (CaC₂)
 - From vicinal dihalides
- Properties
 - Colourless, odourless, weakly polar
 - Immisicible in water
 - Hydrogen attached to triply bonded carbon atom is acidic
 - Undergoes addition reactions
 - Addition of dihydrogen
 - Addition of halogens
 - Addition of hydrogen halides (HX; X = Cl, Br, I)
 - Addition of water
 - Undergoes linear and cyclic polymerisation

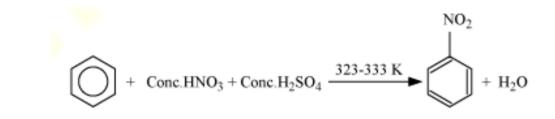

- Shows oxidation reaction
- Undergoes ozonolysis to produce ozonides
- Uses:
 - Oxy-acetylene welding at very high temperatures
 - Illuminant in oxy-acetylene lamp
 - Ripening and preservation of fruits
 - Manufacture of several products like polymers. artificial rubber, oxalic acid, acetaldehyde, acetic acid, etc.

Aromatic hydrocarbon:

- Aromaticity
- 1. Planarity
- 2. Complete delocalization of the electrons in the ring
- 3. Huckel rule \rightarrow Presence of $(4n + 2)\pi$ electrons in the ring (n = 0, 1, 2...)

• Preparation of benzene

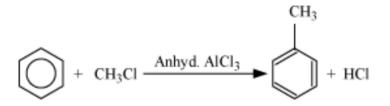
- 1. Cyclic polymerization of ethyne
- 2. Decarboxylation of aromatic acids

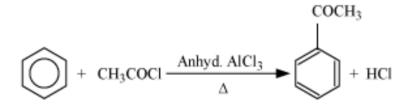


• Physical properties

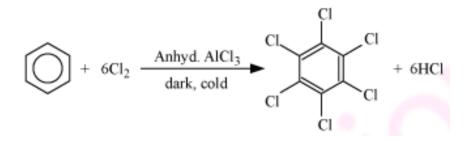
Immiscible with water but readily miscible with organic solvents

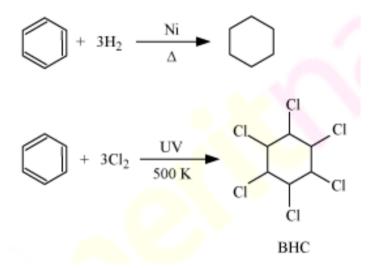
• Chemical properties


- 1. Electrophilic substitution
- 2. Nitration


3. Halogenation

$$\bigcirc$$
 + Cl₂ Anhyd. AlCl₃ + HCl


4. Friedel-Crafts alkylation


5. Friedel-Crafts acylation

6. On treatment with excess of chlorine

7. Addition reaction

- Directive influence of functional group in benzene ring
- 1. Ortho and para directing groups:

2. Meta directing groups:

-NO₂, -CN, -CHO, -COR, -COOH, -COOR, -SO₃H

• Carcinogenicity and toxicity

Benzene and polynuclear hydrocarbons containing more than two benzene rings are toxic and can cause cancer