Organic Chemistry

- Branch of chemistry dedicated only to the study of carbon and its compounds is known as **organic chemistry**.
- Carbon has a unique tendency of catenation. It binds with itself via a series of covalent bonds. This is the basis of organic chemistry.
- The bonds that are formed by sharing electrons are known as covalent bonds.

Characteristics of organic compounds are:

- They are covalent compounds of carbon.
- They can exist in all three states i.e., solid, liquid, and gas.
- They are soluble in organic solvents.
- They are poor conductors of electricity.

Organic compounds can be classified into the following categories.

- Open chain or aliphatic compounds
- Closed chain or cyclic compounds
- Carbocyclic or homocyclic compounds have ring comprising only of carbon atoms.
- Heterocyclic compounds contain other elements besides carbon in the ring.

- Acyclic or open chain compounds consist of straight or branched chain compounds.
- Alicyclic or closed chain or ring compounds contain carbon atoms joined in the form of ring (homocyclic). In some rings (heterocyclic), atoms other than carbon are present.
- Benzenoid aromatic compounds (include benzene and other related compounds)
- Non-benzenoid compounds (do not contain benzene ring)
- Functional group: An atom or group of atoms joined in a specific manner which is responsible for the characteristic chemical properties of the organic compound. For example, alcohol, aldehyde etc.
- Homologous series: A group or a series of organic compounds each containing a characteristic functional group. Successive members differ from each other in molecular formula by a -CH₂ unit.

• Hydrocarbons

- The compounds made up of only carbon and hydrogen are called hydrocarbons.
- The compounds of carbon that contain only single bonds among carbon atoms are called saturated compounds
- Compounds containing double and triple bonds among carbon atoms are called unsaturated compounds.
- If the hydrocarbons are saturated (like methane and ethane), then they are called alkanes; if they are unsaturated, then they are alkenes (containing double bonds) and alkynes (containing triple bonds).

• Aliphatic compounds

- Organic compounds that have a straight chain or branched chain structures.
- Example, methane, ethane, propane, 2-methylpropane etc.

- They are classified as:
 - Alkanes (contain only single bonds): General molecular formula is $C_nH_{(2n+2)}$ where, n = number of carbon atoms.
 - Alkenes (contain atleast one double bond): General molecular formula is C_nH_{2n} where, n = number of carbon atoms.
 - Alkynes (contains atleast one triple bond): General molecular formula is C_nH_{2n-2} where, n = number of carbon atoms.

• Alicyclic Saturated Hydrocarbons:

- Saturated organic compounds in which carbon atoms form a closed chain.
- Aromatic Compounds
 - Organic compounds that contain a ring system and have characteristic odour.
 First member is Benzene.

• Structural Isomerism

- Organic compounds which have same chemical formula but differ in their structures are known as isomers and this phenomenon is known as isomerism.
- For example, 2-methylpropane is the isomer of n-butane.
- Types of structure isomerism:
 - Chain/ skeletal/ nuclear isomerism: difference in the structure of the carbon chain that forms the nucleus of the molecule
 - Position isomerism: difference in the position of the functional group, the carbon–carbon multiple bonds or the substituent group
 - Functional group isomerism: presence of different functional groups
 - Metamerism: difference in the number of carbon atoms on either side of the functional group

• Functional groups

- Carbon also forms covalent bonds with oxygen, nitrogen, and sulphur atoms.
- Presence of any of these elements in a compound confers specific properties to the compound.
- A group of atoms that imparts specific properties to hydrocarbons is called a functional group.
- Some functional groups in carbon compounds are shown in the given table.

Hetero atom	Name of functional grou	pFormula of functional group
Chlorine/BromineHalo- (Chloro/Bromo)		–Cl, –Br
Oxygen	Alcohol	–OH
	Aldehyde	–CHO
	Ketone	>C=O
	Carboxylic acid	–COOH

• Homologous series

• A homologous series is a series of carbon compounds having different numbers of carbon atoms, but containing the same functional group.

Alkanes:

- General formula is C_nH_{2n+2} .
- Occurence:
 - Methane is the main constituent of marsh gas.
 - Methane is exhaled by animals that feed on food containing cellulose.
 - Methane is found in the intestinal gas of humans and animals.
 - Methane is found in cavities in coal.
- Prepared by:
 - Reduction of unsaturated hydrocarbons
 - Reduction of alkyl halides
 - Wurtz reaction
 - Decarboxylation reaction
 - Kolbe's electrolysis
- Properties
 - Non-polar, colourless and odourless
 - Hydrophobic
 - Combustion reaction produces carbon dioxide
 - Controlled oxidation converts them to alcohols, aldehydes or carboxylic acids
 - Undergo isomerisation in the presence of AlCl₃ and HCl
 - Aromatization reaction takes place at 773 K at 10–20 atmospheric pressure in the presence of the oxides of V, Mo, or Cr supported over alumina
 - On heating to a higher temperature, higher alkanes decompose into lower alkanes or alkenes (**Pyrolysis and cracking**)
 - Alkyl halides can be prepared by substitution reaction of alkanes
- Uses:
 - Preparation of acetylene, formaldehyde, methanol, chloromethane and tetrachloro methane
 - Domestic fuel
 - Preparation of a useful solvent in dry cleaning

Alkenes:

- General formula is C_nH_{2n} .
- Alkenes are unsaturated hydrocarbons containing at least one double bond.

• Carbon-carbon double bond in alkenes consist of one sigma bond and one pi bond.

• Prepared by:

- Partial reduction of alkynes
- Dehydrohalogenation by heating alkyl halides with acloholic KOH
- Dehalogenation by reacting vicinal dihalides with Zn metal
- Dehydration of alcohols using
 - Concentrated H₂SO₄
 - Heated Al₂O₃

• Properties:

- Colourless, odourless, insoluble in water and fairly soluble in non-polar solvents
- Undergo addition reactions:
 - Addition of hydrogen to form alkanes
 - Addition of halogen to form dihalides
 - Addition of hydrogen halide to form alkyl halides
 - Addition of H₂SO₄
 - Addition of water
- Oxidation of alkenes with
 - Baeyer's reagent converts them to vicinal glycols
 - Acidic KMnO₄ or acidic K₂Cr₂O₇ oxidises them to give ketones or acids (depending upon the nature of alkenes)
- Undergoes ozonolysis to form aldehydes
- Polymerises at high temperature in presence of suitable catalyst
- Undergoes combustion to form a large amount of heat
- Uses:
 - Manufacture of synthetic chemicals, polythene, raw materials for detergents
 - For ripeninng of fruits
 - producing oxy-ethylene

Alkynes

- General formula is CnH_{2n-2}
- They are named as the corresponding alkanes replacing 'ane' by the suffix 'yne'.
- Each carbon atom of ethyne has two *sp* hybridised orbitals.
- Preparation of Ethynes
 - From calcium carbide (CaC₂)
 - From vicinal dihalides
- Properties
 - Colourless, odourless, weakly polar
 - Immisicible in water
 - Hydrogen attached to triply bonded carbon atom is acidic
 - Undergoes addition reactions

- Addition of dihydrogen
- Addition of halogens
- Addition of hydrogen halides (HX; X = Cl, Br, I)
- Addition of water
- Undergoes linear and cyclic polymerisation
- Shows oxidation reaction
- Undergoes ozonolysis to produce ozonides
- Uses:
 - Oxy-acetylene welding at very high temperatures
 - Illuminant in oxy-acetylene lamp
 - Ripening and preservation of fruits
 - Manufacture of several products like polymers. artificial rubber, oxalic acid, acetaldehyde, acetic acid, etc.

Methanol (CH₃OH)

- Preparation
 - Earlier produced by destructive distillation of wood
 - Nowdays produced by catalytic hydrogenation of carbon monoxide
- Properties
 - Colourless liquid
 - Boiling point = 337 K
 - Highly poisonous Small quantities cause blindness and large quantities cause even death.
- Uses
 - As a solvent in paints and varnishes
 - In the preparation of formaldehyde (HCHO)

Ethanol (C₂H₅OH)

- Also known as spirit of wine and grain alcohol
- Preparation
 - By fermentation of mollases
 - By hydrolysis of alkyl halides with dilute hot alkali
 - By hydration of ethene using:
 - $\circ~$ Concentrated $\rm H_2SO_4$ at 80 oC and 30 atm
 - $\circ~$ H_3PO_4 at 300 oC and 60 atm
- Properties
 - Colourless liquid
 - Boiling point = 351 K
 - Pleasant odour and inflammable
 - Very good organic solvent

- Reacts with sodium
- Undergoes dehydration to form corresponding alkene
- Combustion reaction produces carbon dioxide, water and heat
- Oxidised to corresponding aldehyde and carboxylic acid by acidified K₂Cr₂O₇
- Undergoes esterification reaction with carboxylic acids
- Reacts with phosphorous halide to form alkyl halide
- Uses
 - As a solvent in manufacture of paint and a number of carbon compounds
 - Denaturation of alcohol Making commercial alcohol unfit for drinking by mixing compounds like copper sulphate, pyridine in it.
 - Denatured alcohol:
 - Addition of poisonous substances like pyridine, methyl alcohol to pure ethanol for making it unfit for consumption
 - Also calles methylated spirit
 - Contains 5% methyl alcohol
 - Used for industrial purposes
 - Spurious alcohol:
 - Illicit liqour prepared by improper distillation
 - Contains large portions of methanol
 - Fatal for human consumption
 - Used as a solvent for paints and varnishes

Acetic acid

- Common name of ethanoic acid (CH₃COOH).
- Its dilute solution in water is known as vinegar.
- Preparation of acetic acid is done by the following methods:
 - Oxidation of ethanol or ethanal (acetaldehyde) using acidified potassium dichromate solution
 - From acetylene using concentrated H_2SO_4 and $HgSO_4$
 - From catalytic oxidation of ethanol over platinum rod
- Properties of acetic acid are as follows:
 - It is a colourless, pungent smelling liquid, miscible with water.
 - It is a weak acid.
 - The reaction of a carboxylic acid with an alcohol to form an ester is known as **esterification reaction**.
 - Esters react in the presence of an acid or a base to give back alcohol and carboxylic acid. This reaction is used in the preparation of soaps and is known as **saponification reaction**.
 - Ethanoic acid reacts with sodium hydroxide to form a salt, sodium ethanoate, and water.

- Carbonates and bicarbonates are also basic in nature and react with ethanoic acid to form salt, water, and carbon dioxide.
- Ethanoic acid reacts with phosphorous compounds like chloride and oxide to form corresponding acid derivative.
- Uses:
 - manufacture of polyvinyl acetate, cellulose acetate and vinegar.
 - as organic solvent.