Rational and Irrational Numbers

• The numbers, which can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, are called rational numbers. Rational numbers can be positive as well as negative. Rational numbers include all integers and fractions.

For example

$$-\frac{2}{7}, \frac{41}{366}, 2 = \frac{2}{1}, \text{ etc.}$$

• To find rational numbers between any two given rational numbers, firstly we have to make their denominators same and then find the respective rational numbers.

Example:

Find some rational numbers between $\frac{1}{6} \frac{7}{8}$.

Solution:

The L.C.M. of 6 and 8 is 24.

Now, we can write

 $\frac{1}{6} = \frac{1 \times 4}{6 \times 4} = \frac{4}{24}$ $\frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24}$

Therefore, some of the rational numbers between $\frac{4}{24} \left(\frac{1}{6}\right)_{and} \frac{21}{24} \left(\frac{7}{8}\right)_{are}$

 $\frac{5}{24}, \frac{6}{24}, \frac{7}{24}, \frac{8}{24}, \frac{9}{24}, \frac{10}{24}, \frac{11}{24}, \frac{12}{24}, \frac{13}{24}, \frac{14}{24}, \frac{15}{24}, \frac{16}{24}, \frac{17}{24}, \frac{18}{24}, \frac{19}{24}, \frac{20}{24}$

- Natural numbers are a collection of all positive numbers starting from 1.
- Whole numbers are a collection of all natural numbers including 0.
- Integers are the set of numbers comprising of all the natural numbers 1, 2, 3 ... and their negatives -1, -2, -3 ..., and the number 0.
- Rational numbers are the numbers that can be written in $\frac{P}{q}$ form, where p and q are integers and $q \neq 0$

• Closure property

- Whole numbers are closed under addition and multiplication. However, they are **not** closed under subtraction and division.
- Integers are also closed under addition, subtraction and multiplication. However, they are **not** closed under division.
- Rational numbers:
 - 1. Rational numbers are closed under addition.

Example: $\frac{2}{5} + \frac{3}{2} = \frac{19}{10}$ is a rational number.

2. Rational numbers are closed under subtraction.

Example: $\frac{1}{5} - \frac{3}{4} = \frac{-11}{20}$ is rational number.

3. Rational numbers are closed under multiplication.

Example: $\frac{2}{3} \times \left(\frac{-3}{5}\right) = \frac{-2}{5}$ is a rational number.

4. Rational numbers are **not** closed under division.

Example: $2 \div 0$ is not defined.

- Decimal expansion of a rational number can be of two types:
 - (i) Terminating

(ii) Non-terminating and repetitive

In order to find decimal expansion of rational numbers we use long division method.

For example, to find the decimal expansion of $\frac{1237}{25}$.

We perform the long division of 1237 by 25.

	49.48
25)	1237.00
	100
	237
	225
	120
	100
	200
	200
	0

Hence, the decimal expansion of $\frac{1237}{25}$ is 49.48. Since the remainder is obtained as zero, the decimal number is terminating.

• Every number of the form \sqrt{p} , where *p* is a prime number is called an irrational number. For example, $\sqrt{3}$, $\sqrt{11}$, $\sqrt{12}$ etc.

Theorem: If a prime number p divides a^2 , then p divides a, where a is a positive integer.

Example:

Prove that $\sqrt{7}$ is an irrational number.

Solution:

If possible, suppose $\sqrt{7}$ is a rational number. Then, $\sqrt{7} = \frac{p}{a}$, where p, q are integers, $q \neq 0$. If HCF $(p, q) \neq 1$, then by dividing p and q by HCF(p, q), $\sqrt{7}$ can be reduced as $\sqrt{7} = \frac{a}{b}$ where HCF (a, b) = 1... (1) $\Rightarrow \sqrt{7b} = a$ $\Rightarrow 7b^2 = a^2$ $\Rightarrow a^2 \text{ is divisible by 7} \\ \Rightarrow a \text{ is divisible by 7}$... (2) $\Rightarrow a = 7c$, where \dot{c} is an integer $\therefore \sqrt{7c} = b$ $\Rightarrow 7b^2 = 49c^2$ $\Rightarrow b^2 = 7c^2$ $\Rightarrow b^2$ is divisible by 7 \Rightarrow *b* is divisible by 7 ... (3) From (2) and (3), 7 is a common factor of a and b. which contradicts (1)

 $\therefore \sqrt{7}$ is an irrational number.

Example:

Show that $\sqrt{12} - 6$ is an irrational number.

Solution:

If possible, suppose $\sqrt{12} - 6$ is a rational number. Then $\sqrt{12} - 6 = \frac{p}{q}$ for some integers $p, q (q^{-1} 0)$ Now, $\sqrt{12} - 6 = \frac{p}{q}$ $\Rightarrow 2\sqrt{3} = \frac{p}{q} + 6$ $\Rightarrow \sqrt{3} = \frac{1}{2}\left(\frac{p}{q} + 6\right)$

As p, q, 6 and 2 are integers, $\frac{1}{2}\left(\frac{p}{q}+6\right)$ is rational number, so is $\sqrt{3}$. This conclusion contradicts the fact that $\sqrt{3}$ is irrational. Thus, $\sqrt{12} - 6$ is an irrational number.

• Operation on irrational numbers:

- Like terms: The terms or numbers whose irrational parts are the same are known as like terms. We can add or subtract like irrational numbers only.
- Unlike terms: The terms or numbers whose irrational parts are not the same are known as unlike terms.

We can perform addition, subtraction, multiplication and division involving irrational numbers.

Note:

(1) The sum or difference of a rational and an irrational number is always irrational.

(2) The product or quotient of a non-zero rational number and an irrational number is always irrational.

Example:

(1)
$$(2\sqrt{3} + \sqrt{2}) + (3\sqrt{3} - 5\sqrt{2})$$

= $(2\sqrt{3} + 3\sqrt{3}) + (\sqrt{2} - 5\sqrt{2})$ (Collecting like terms)
= $(2 + 3)\sqrt{3} + (1 - 5)\sqrt{2}$
= $5\sqrt{3} - 4\sqrt{2}$
(2) $(5\sqrt{7} - 3\sqrt{2}) - (7\sqrt{7} + 3\sqrt{2})$

$$= 5\sqrt{7} - 3\sqrt{2} - 7\sqrt{7} - 3\sqrt{2}$$

$$= 5\sqrt{7} - 7\sqrt{7} - 3\sqrt{2} - 3\sqrt{2}$$

$$= (5 - 7)\sqrt{7} - (3 + 3)\sqrt{2} \text{ (Collecting like terms)}$$

$$= -2\sqrt{7} - 6\sqrt{2}$$

(3) $(4\sqrt{5} + 3\sqrt{2}) \times \sqrt{2}$

$$= 4\sqrt{5} \times \sqrt{2} + 3\sqrt{2} \times \sqrt{2}$$

$$= 4\sqrt{5} \times \sqrt{2} + 3\sqrt{2} \times \sqrt{2}$$

$$= 4\sqrt{10} + 3 \times 2 \qquad (\sqrt{2} \times \sqrt{2} = 2)$$

$$= 4\sqrt{10} + 6$$

(4) $5\sqrt{6} \div \sqrt{12}$

$$= 5\sqrt{6} \times \frac{1}{\sqrt{12}}$$

$$= \frac{5 \times \sqrt{2} \times \sqrt{3}}{2 \times \sqrt{3}}$$

$$= \frac{5}{2}\sqrt{2}$$

• If $\sqrt[n]{x}$ is an irrational number such that x is a positive rational number and $a \ (a \neq 1)$ is a natural number, then $\sqrt[n]{x}$ is known as a **surd**. Here, $\sqrt{}$ is **radical** sign, a is **order** of the surd and x is **radicand**.

For example, $\sqrt[3]{10}$ is a surd of order 3.

• A surd whose order is 2 is called quadratic surd.

• Rules for surds:

If $x, y \in Q$, x, y > 0 and $a, b, c \in N$, then

For example, $\sqrt[4]{\sqrt{8}} = \sqrt[4]{\sqrt{8}} = \sqrt[8]{8} \left[\sqrt[6]{\sqrt{x}} = \sqrt[6]{x}\right]$

Forms of surds

Pure form: A surd of the form $k\sqrt[n]{x}$ where $k \in Q$ such that $k = \pm 1$. For example, $\sqrt[n]{7} - \sqrt{11}$ are pure surds.

Mixed form: A surd of the form $k\sqrt[4]{x}$ where $k \in Q$ such that $k \neq 0$ and $k \neq \pm 1$. For example, $3\sqrt[3]{5} - 4\sqrt{16}$ are mixed surds.

• Conversion of mixed surds into pure surds:

For example, $-5\sqrt{3} = -\sqrt{25}\sqrt{3} = -\sqrt{25 \times 3} = -\sqrt{75}$

• Conversion of pure surds into mixed surds:

For example, $\sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = \sqrt{3^2} \times \sqrt{3} = 3\sqrt{3}$

• In cases, where the radicand is a prime number or it has the factors whose roots are irrational, it is not possible to express pure surd as mixed surd.

For example, $\sqrt{11}$, $\sqrt{21}$ etc.

• If a rational number is obtained after multiplying two surds then each surd is called the **rationalizing factor** of the other.

For example,
$$\sqrt{3} \times \sqrt{27} = \sqrt{3 \times 27} = \sqrt{81} = \sqrt{9^2} = 9$$

So, $\sqrt{3}$ and $\sqrt{27}$ are rationalizing factors of each other.

• Rationalization of denominators:

- The denominator of √a+√b / √x+√y can be rationalized by multiplying both the numerator and the denominator by √x √y, where a, b, x and y are integers.
 The denominator of c+√d can be rationalized by
- The denominator of $c+\sqrt{d}$ can be rationalized by multiplying both the numerator and the denominator by $c-\sqrt{d}$, where *a*, *b*, *c* and *d* are integers.

Note: $\sqrt{x} - \sqrt{y}$ and $c - \sqrt{d}$ are the conjugates of $\sqrt{x} + \sqrt{y}$ and $c + \sqrt{d}$ respectively.

Example: Rationalize
$$\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}}$$

Solution:

$$\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}$$

$$= \frac{2\sqrt{2\times5}-2\sqrt{2\times3}}{\left(\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2} \quad \left[(a+b)(a-b) = a^2 - b^2 \right]$$

$$= \frac{2\sqrt{10}-2\sqrt{6}}{5-3}$$

$$= \frac{2\left(\sqrt{10}-\sqrt{6}\right)}{2}$$

$$= \sqrt{10} - \sqrt{6}$$