Indices and Logarithms

• Laws of rational exponents of real numbers:

Let a and b be two real numbers and m and n be two rational numbers then

$$a^{p} \cdot a^{q} = a^{p+q}$$

$$(a^{p})^{q} = a^{pq}$$

$$\frac{a^{p}}{a^{q}} = a^{p-q}$$

$$a^{p}b^{p} = (ab)^{p}$$

$$\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}$$

$$a^{-p} = \frac{1}{a^{p}}$$

Example:

$$\sqrt[3]{(512)^{-2}}$$

$$= [(512)^{-2}]^{\frac{1}{3}}$$

$$= (512)^{\frac{-2}{3}} [(a^m)^n = a^{mn}]$$

$$= (8)^{\frac{-2}{3}}$$

$$= (8)^{\frac{-2}{3}} [(a^m)^n = a^{mn}]$$

$$= (8)^{-2}$$

$$= \frac{1}{8^2} [a^{-m} = \frac{1}{a^m}]$$

$$= \frac{1}{64}$$

• If a is any positive real number (except 1), n is any rational number and $a^n = b$, then n is called the **logarithm** of b to the base a, and is written as $\log_a b$.

Thus, $a^n = b$ if and only if $\log_a b = n$.

 $a^n = b$ is called the exponential form and $\log_a b = n$ is called the logarithmic form.

• Properties of logarithm:

- Logarithms are only defined for positive real numbers.
- \circ log_a 1 = 0 and log_a a = 1 where, a is any positive real number except 1.

$$\circ \log_a x = \log_a y = n(\text{say}) \Rightarrow x = y$$

- Logarithms to the base 10 are called common logarithms.
- If no base is given, the base is always taken as 10. For example, $\log 5 = \log_{10} 5$

• Laws of logarithm:

• Product Law:

$$\log_a mn = \log_a m + \log_a n$$

In general,
$$\log_a (mnp...) = \log_a m + \log_a n + \log_a p + ...$$

Quotient Law:

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

• Power Law:

$$\log_a m^n = n \log_a m$$

Example:

Find the value of x if $\log_7 343 = 5x - 4$.

Solution:

$$\log_7 343 = 5x - 4$$

$$\Rightarrow 7^{(5x-4)} = 343$$

$$\Rightarrow 7^{(5x-4)} = 7^3$$

$$\Rightarrow 5x - 4 = 3$$

$$\Rightarrow 5x = 7$$

$$\Rightarrow x = \frac{7}{5}$$