Coordinate Geometry

• Cartesian plane and the terms associated with it

To identify the position of an object or a point in a plane, we require two perpendicular lines: one of them is horizontal and the other is vertical.

Example:

Put an eraser on a book and then describe the position of the eraser.

Solution:

In order to identify the position of the eraser on the book, we take the adjacent edges as perpendicular lines. Take 1 unit = 1 cm along the vertical and horizontal lines. Now, it is seen that the eraser is at a distance of 11 cm from the vertical line and 10 cm from the horizontal line.

Thus, conventionally, the position of the eraser can be written as (11, 10).

• Cartesian system

A Cartesian system consists of two perpendicular lines: one of them is horizontal and the other is vertical. The horizontal line is called the x- axis and the vertical line is called the y-axis. The point of intersection of the two lines is called origin, and is denoted by O.

- XOX' is called the *x*-axis; YOY' is called the *y*-axis; the point O is called the origin.
- Positive numbers lie on the directions of OX and OY.
- Negative numbers lie on the directions of OX' and OY'.
- OX and OY are respectively called positive x-axis and positive y-axis.
- OX' and OY' are respectively called negative *x*-axis and negative *y*-axis. The axes divide the plane into four equal parts. The four parts are called quadrants, numbered I, II, III and IV, in anticlockwise from positive *x*-axis, OX.
- The plane is also called co-ordinate plane or Cartesian plane or xy -plane.

• Coordinate Geometry

Example:

Name the quadrant or the axis in which the points (5, -4), (2, 7) and (0, -9) lie? **Solution**

The coordinates of the point (5, -4) are of the form (+, -).

(5, -4) lie in quadrant IV

The coordinates of the point (2, 7) are of the form (+, +).

(2, 7) lie in quadrant I.

The coordinates of the point (0, -9) are of the form (0, b).

(0, -9) lie on the y-axis

The coordinates of a point on the coordinate plane can be determined by the following conventions.

The x-coordinate of a point is its perpendicular distance from the y-axis, measured along the x-axis (positive along the positive x-axis and negative along the negative x-axis).

The *x*-coordinate is also called the abscissa.

The y-coordinate of a point is its perpendicular distance from the x-axis, measured along the y-axis (positive along the positive y-axis and negative along the negative y-axis) The y-coordinate is also called the ordinate.

In stating the coordinates of a point in the coordinate plane, the *x*-coordinate comes first and then the *y*-coordinate. The coordinates are placed in brackets.

Example:

What are the coordinates of points A, B and C in the given figure?

Solution:

It is observed that x-coordinate of point A is 5 y-coordinate of point A is 2 Coordinates of point A are (5, 2). x-coordinate of point C is -5 y-coordinate of point C is 2 Coordinates of point C are (-5, 2).

Note: The coordinates of the origin are (0, 0). Since the origin has zero distance from both the axes, its abscissa and ordinate are both zero.

• Relationship between the signs of the coordinates of a point and the quadrant of the point in which it lies:

The 1st quadrant is enclosed by the positive *x*-axis and positive *y*-axis. So, a point in the 1st quadrant is in the form (+, +). The 2nd quadrant is enclosed by the negative *x*-axis and positive *y*-axis. So, a point in the 2nd quadrant is in the form (-, +). The 3rd quadrant is enclosed by the negative *x*-axis and the negative *y*-axis. So, the point in the 3rd quadrant is in the form (-, -).

The 4^{th} quadrant is enclosed by the positive *x*-axis and the negative *y*-axis. So, the point in the 4^{th} quadrant is in the form (+, -).

• Location of a point in the plane when its coordinates are given

Example: Plot the following ordered pairs of numbers (x, y) as points in the coordinate plane.

[Use the scale 1 cm = 1 unit]

x	-3	4	-3	0
y	4	-3	-3	2

Solution:

x	-3	4	-3	0
y	4	-3	-3	2

Taking 1 cm = 1 unit, we draw the x-axis and y-axis.

The pairs of numbers in the given table can be represented as (-3, 4), (4, -3) and (-3, -3), (0, 2).

These points can be located in the coordinate plane as:

NB: The coordinates of the point on the x-axis are of the form (a, 0) and the coordinates of the point on the y-axis are of the form (0, b), where a, b are real numbers.

• We can plot a point in the Cartesian plane, if the coordinates of the points are given.

Example:

Plot the points A (5, -3) and B (-2, 5) on the Cartesian plane.

Solution:

To plot A (5, -3):

- (1) Move 5 units along OX and mark the endpoint as M.
- (2) From M and perpendicular to the x-axis, move 3 units along OY'. Mark the endpoint as A. This is the location of the point (5, -3) on the Cartesian plane.

To plot B (-2, 5):

- (1) Move 2 units along OX' and mark the endpoint as N.
- (2) From N and perpendicular to the *x*-axis, move 5 units along OY. Mark the endpoint as B. This is the location of the point (-2, 5) on the Cartesian plane.

Points A and B are plotted in the following graph.

- The graph of x = a is a straight line parallel to the y-axis, situated at a distance of a units from y-axis.
- The graph of y = b is a straight line parallel to the x-axis, situated at a distance of b units from x-axis.

Example:

Represent the equation 2y + 5 = 0, on Cartesian plane.

Solution:

$$2y + 5 = 0$$

$$\Rightarrow 2y = -5$$

$$\Rightarrow$$
 $y = \frac{-5}{2} = -2.5$, which is of the form $y = b$.

The graph of this equation can be drawn as follows:

• Slope of a line: If θ is the inclination of a line l (the angle between positive x-axis and line l), then $m = \tan \theta$ is called the slope or gradient of line l.

- The slope of a line whose inclination is 90° is not defined. Hence, the slope of the vertical line, y-axis is undefined.
- The slope of the horizontal line, *x*-axis is zero.

For example, the slope of a line making an angle of 135° with the positive direction of x-axis is $m = \tan 135^\circ = \tan (180^\circ - 45^\circ) = -\tan 45^\circ = -1$

• Slope of line passing through two given points:

The slope (m) of a non-vertical line passing through the points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$, $x_1 \neq x_2$.

For example, the slope of the line joining the points (-1, 3) and (4, -2) is given by, $m = \frac{\gamma_2 - \gamma_1}{x_2 - x_1} = \frac{(-2) - 3}{4 - (-1)} = -\frac{5}{5} = -1$

• Conditions for parallelism and perpendicularity of lines:

Suppose l_1 and l_2 are non-vertical lines having slopes m_1 and m_2 respectively.

- \circ l_1 is parallel to l_2 if and only if $m_1 = m_2$ i.e., their slopes are equal.
- l_1 is perpendicular to l_2 if and only if $m_1m_2 = -1$ i.e., the product of their slopes is -1.

Example:

Find the slope of the line which makes an angle of 45° with a line of slope 3.

Solution:

Let *m* be the slope of the required line.

• Collinearity of three points: Three points A, B and C are collinear if and only if slope of AB = slope of BC

• Slope-intercept form of a line

- The equation of the line, with slope m, which makes y-intercept c is given by y =mx + c.
- The equation of the line, with slope m, which makes x-intercept d is given by y = m(x-d).

Example:

Find the equation of the line which cuts off an intercept 5 on the x-axis and makes an angle of 30° with the y-axis.

Solution:

Slope of the line, $m = \tan 60^\circ = \sqrt{3}$

$$OB = 5$$

Intercept on the x-axis, c = -OB = -5 and $\tan 60^\circ = -5\sqrt{3}$ Equation of the required line is $\gamma = \sqrt{3}x + (-5\sqrt{3})$.

• General equation of line

Any equation of the form Ax + By + C = 0, where A and B are not zero simultaneously is called the general linear equation or general equation of line.

Slope of the line =
$$-\frac{\text{C oefficient of } x}{\text{C oefficient of } y} = -\frac{A}{B}$$

y- intercept = $-\frac{C}{B}$

Example:

Find the slope and the *y*-intercept of the line 2x - 3y = -16.

Solution:

The equation of the given line can be rewritten as 2x - 3y + 16 = 0.

Here, A = 2, B = -3 and C = 16. Slope of the line $= -\frac{A}{B} = -\frac{2}{(-3)} = \frac{2}{3}$

Intercept on the y-axis
$$= -\frac{C}{B} = -\frac{16}{(-3)} = \frac{16}{3}$$

• Graphical solution of linear equation in two variables:

Every point on the graph of a linear equation in two variables is a solution of the linear equation and moreover, every solution of the linear equation is a point on the graph of the linear equation.

Example:

A bag contains some Re 1 coins and some Rs 2 coins. The total worth of coins is Rs 45. Find the number of Re 1 coins, if there are 10 coins of Rs 2.

Solution:

Let there be x coins of Re 1 and y coins of Rs 2.

Thus,
$$1x + 2y = 45$$

$$\Rightarrow$$
 $x + 2y = 45$

This is the required linear equation of the given information. The three solutions of this equation have been given in the tabular form as follows:

X	5	15	25
y	20	15	10

By plotting the points (5, 20), (15, 15) and (25, 10), we obtain the following graph.

From the above graph, it can be seen that the value of x corresponding to y = 10 is 25.

Therefore, there are 25 coins of Re 1, if there are 10 coins of Rs 2.

• Solving given pairs of linear equations in two variables graphically:

Example:

Solve the following system of linear equations graphically.

$$x + y + 2 = 0$$
, $2x - 3y + 9 = 0$

Hence, find the area bounded by these two lines and the line x = 0

Solution:

The given equations are

$$x + y + 2 = 0$$

$$2x - 3y + 9 = 0$$

Table for the equations x + y + 2 = 0

X	0	-2
y	-2	0

Table for the equation 2x - 3y + 9 = 0

X	0	-4.5
y	3	0

By plotting and joining the points (0, -2) and (-2, 0), the line representing equation (1) is obtained.

By plotting and joining the points (0, 3) and (-4.5, 0), the line representing equation (2) is obtained.

It is seen that the two lines intersect at point B (-3, 1).

Solution of the given system of equation is (-3, 1)

Area bound by the two lines and x = 0

= Area of \triangle ABC

$$= \frac{1}{2} \times AC \times BL = \frac{1}{2} \times 5 \times 3 \text{ square units} = 7.5 \text{ square units}$$

• Distance formula

The distance between the points P (x_1, y_1) and Q (x_2, y_2) is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 $PQ = x^2 - x^{12} + y^2 - y^{12}$

Example 1:

Find the values of l, if the distance between the points (-5, 3) and (l, 6) is 5 units.

Solution:

The given points are A (-5, 3) and B (l, 6).

It is given that AB = 5 units

By distance formula we have

$$\sqrt{\{\lambda - (-5)\}}^{2} + (6 - 3)^{2} = 5 \lambda - 52 + 6 - 6$$

$$\Rightarrow (\lambda + 5)^{2} + 9 = 25$$

$$\Rightarrow \lambda^{2} + 25 + 10\lambda + 9 = 25$$

$$\Rightarrow \lambda^{2} + 10\lambda + 9 = 0$$

$$\Rightarrow (\lambda + 9)(\lambda + 1) = 0$$

$$\Rightarrow \lambda = -1, \text{ or } \lambda = -9$$

$$32 = 5 \Rightarrow \lambda + 52 + 9 = 25 \Rightarrow \lambda + 25 + 10\lambda + 9 = 25 \Rightarrow \lambda + 25 + 10\lambda + 9 = 0 \Rightarrow \lambda + 9\lambda + 1 = 0 \Rightarrow \lambda = -1, \text{ or } \lambda = -9$$

Required values of l are -1 or -9.

• The distance of a point (x, y) from the origin O (0, 0) is given by OP = $\sqrt{x^2 + y^2}$ OP=x2+y2