
# Reflection of light

• Reflection of light makes things visible.

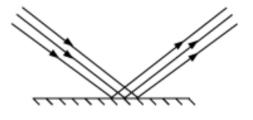


- (a) i (Angle of incidence) = r (Angle of reflection)
- (b) AO, OP, and OB lie on the same plane.
  - Laws of reflection:
    - The angle of incident is equal to the angle of reflection
    - The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.
  - Image formation by a plane mirror

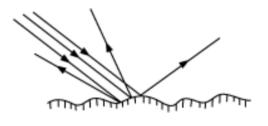


Left part of the candle appears on the right and its right part appears on the left. This is known as **lateral inversion.** 

- Characteristics of images formed by plane mirror
  - virtual and erect
  - same size as of object


- o laterally inverted
- image distance and object distance are same and perpendicular from mirror
- Virtual images are those images which cannot be obtained on screen. But there are some images which can be obtained on screen. Such images are called real image.

## • Uses of plane mirror


- It is used as a looking glass.
- It is used to increase the effective length of an optician's room.
- In periscope, two parallel plane mirrors are inclined at 45 degrees with vertical walls such that they are facing each other.
- In kaleidoscope, three plane mirrors are inclined with each other at 60 degrees.
- It is used in solar heaters and cookers to heat substances by reflecting the sunlight towards the substances.

#### • Regular reflection

Irregular and diffused reflection

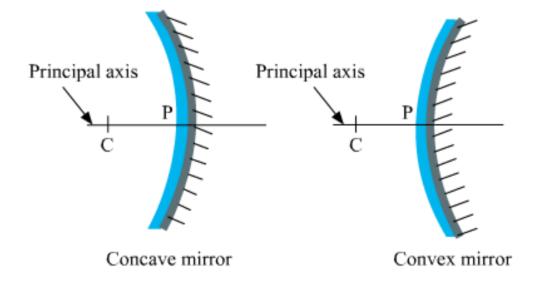


Regular reflection

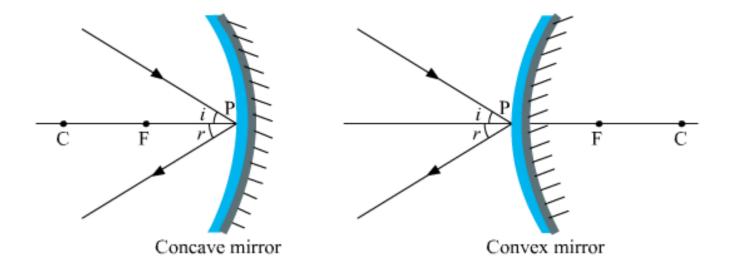


Diffused reflection

- The laws of reflection are valid in regular as well as irregular or diffused reflections.
- Smooth or polished surfaces gives regular reflection.
- Uneven of unpolished surfaces gives irregular reflection.
- Objects that give their own light are known as luminous objects
- Objects that are visible because of reflected light are known as **illuminated objects**.
- Kaleidoscope works on the principle of multiple reflections.
- **Periscope** is an optical device used to see objects that are not along the line of sight.
- Sunlight consists of several colours.
- Splitting of white light into diffrent colours is called dispersion.


• Number of image formed in multiple reflection =  $\frac{360^{\circ}}{\text{angle between two plane mirros}} - 1$ 

## Spherical Mirror


• Centre of curvature: Centre of the sphere of which the spherical mirror is a part



• Pole: It is the midpoint of the aperture of the spherical mirror or mirror centre.



- Focus: Where parallel rays (parallel to the principal axis) meet or appear to meet after reflection.
- Principal Axis: The imaginary line that runs through the pole and the center of curvature of a spherical mirror.
- Distance of focus from the pole is half the radius of curvature.



## **Spherical Mirror**

- Concave spherical mirror A spherical mirror whose reflecting surface is towards the centre of the sphere is called concave spherical mirror.
- Convex spherical mirror A spherical mirror whose reflecting surface is away from the centre of the sphere is called convex spherical mirror.
- Focal length The distance between the pole and the principal focus of the mirror is called the focal length (f) of the mirror.
- For both the spherical mirrors the f = R/2
- Mirror formula for both the mirrors is
- 1f=1u+1v=2R
- For convex mirror:

| • | Position of object            | Position of object                               |
|---|-------------------------------|--------------------------------------------------|
|   | At infinity                   | At the Focus behind the mirror                   |
|   | Between infinity and the pole | Between the pole and the focus behind the mirror |

• For concave mirror:

| Position of object | Position of object |
|--------------------|--------------------|
| At infinity        | С                  |
| Beyond C           | Between F and C    |
| At C               | At C               |
| Between C and F    | Beyond C           |
| Beyond C           | At infinity        |
| Between P and F    | Behind the mirror  |

## • Difference between a real image and a virtual image

| S.  | Real Image | Virtual Image |
|-----|------------|---------------|
| No. |            |               |

| 1. | Can be obtained on a screen or wall | Cannot be obtained on a screen or wall                          |
|----|-------------------------------------|-----------------------------------------------------------------|
| 2. | Can be touched                      | Cannot be touched                                               |
| 3. | Formed in front of the mirror       | Formed behind the mirror                                        |
| 4. | Formed by concave mirrors only      | Formed by all types of mirrors i.e., plane, convex, and concave |
| 5. | These images are always inverted    | These images are always erect                                   |

- 1. Concave mirror is used as the reflector of a torch, dentist mirror, etc. It is also used in solar furnaces.
- 2. Convex mirror is used as a rear view mirror in vehicles. It also used road safety mirrors.