

ANSWERS

Chapter 9

9.1 1.8

9.2 (a) From the given graph for a stress of $150 \times 10^6 \text{ N m}^{-2}$ the strain is 0.002

(b) Approximate yield strength of the material is $3 \times 10^8 \text{ N m}^{-2}$

9.3 (a) Material A

(b) Strength of a material is determined by the amount of stress required to cause fracture: material A is stronger than material B.

9.4 (a) False (b) True

9.5 $1.5 \times 10^{-4} \text{ m}$ (steel); $1.3 \times 10^{-4} \text{ m}$ (brass)

9.6 Deflection = $4 \times 10^{-6} \text{ m}$

9.7 2.8×10^{-6}

9.8 0.127

9.9 $7.07 \times 10^4 \text{ N}$

9.10 $D_{\text{copper}}/D_{\text{iron}} = 1.25$

9.11 $1.539 \times 10^{-4} \text{ m}$

9.12 $2.026 \times 10^9 \text{ Pa}$

9.13 $1.034 \times 10^3 \text{ kg/m}^3$

9.14 0.0027

9.15 0.058 cm^3

9.16 $2.2 \times 10^6 \text{ N/m}^2$

9.17 Pressure at the tip of anvil is 2.5×10^{11} Pa

9.18 (a) 0.7 m (b) 0.43 m from steel wire

9.19 Approximately 0.01 m

9.20 260 kN

9.21 2.51×10^{-4} m³

Chapter 10

10.3 (a) decreases (b) η of gases increases, η of liquid decreases with temperature (c) shear strain, rate of shear strain (d) conservation of mass, Bernoulli's equation (e) greater.

10.5 6.2×10^6 Pa

10.6 10.5 m

10.7 Pressure at that depth in the sea is about 3×10^7 Pa. The structure is suitable since it can withstand far greater pressure or stress.

10.8 6.92×10^5 Pa

10.9 0.800

10.10 Mercury will rise in the arm containing spirit; the difference in levels of mercury will be 0.221 cm.

10.11 No, Bernoulli's principle applies to streamline flow only.

10.12 No, unless the atmospheric pressures at the two points where Bernoulli's equation is applied are significantly different.

10.13 9.8×10^2 Pa (The Reynolds number is about 0.3 so the flow is laminar).

10.14 1.5×10^3 N

10.15 Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the tube is smaller), flow speed is larger due to mass conservation. Consequently pressure there is smaller according to Bernoulli's equation. We assume the fluid to be incompressible].

10.16 0.64 m s⁻¹

10.17 2.5×10^{-2} N m⁻¹

10.18 4.5×10^{-2} N for (b) and (c), the same as in (a).

10.19 Excess pressure = 310 Pa, total pressure = 1.0131×10^5 Pa. However, since data are correct to three significant figures, we should write total pressure inside the drop as 1.01×10^5 Pa.

10.20 Excess pressure inside the soap bubble = 20.0 Pa; excess pressure inside the air bubble in soap solution = 10.0 Pa. Outside pressure for air bubble = $1.01 \times 10^5 + 0.4 \times 10^3 \times 9.8 \times 1.2 = 1.06 \times 10^5$ Pa. The excess pressure is so small that up to three significant figures, total pressure inside the air bubble is 1.06×10^5 Pa.

10.21 55 N (Note, the base area does not affect the answer)

10.22 (a) absolute pressure = 96 cm of Hg; gauge pressure = 20 cm of Hg for (a), absolute pressure = 58 cm of Hg, gauge pressure = -18 cm of Hg for (b); (b) mercury would rise in the left limb such that the difference in its levels in the two limbs becomes 19 cm.

10.23 Pressure (and therefore force) on the two equal base areas are identical. But force is exerted by water on the sides of the vessels also, which has a nonzero vertical component when the sides of the vessel are not perfectly normal to the base. This net vertical component of force by water on sides of the vessel is greater for the first vessel than the second. Hence the vessels weigh different even when the force on the base is the same in the two cases.

10.24 0.2 m

10.25 (a) The pressure drop is greater (b) More important with increasing flow velocity.

10.26 (a) 0.98 m s^{-1} ; (b) $1.24 \times 10^{-5} \text{ m}^3 \text{ s}^{-1}$

10.27 4393 kg

10.28 5.8 cm s^{-1} , $3.9 \times 10^{-10} \text{ N}$

10.29 5.34 mm

10.30 For the first bore, pressure difference (between the concave and convex side) = $2 \times 7.3 \times 10^{-2} / 3 \times 10^{-3} = 48.7 \text{ Pa}$. Similarly for the second bore, pressure difference = 97.3 Pa. Consequently, the level difference in the two bores is $[48.7 / (10^3 \times 9.8)] \text{ m} = 5.0 \text{ mm}$.

The level in the narrower bore is higher. (Note, for zero angle of contact, the radius of the meniscus equals radius of the bore. The concave side of the surface in each bore is at 1 atm).

10.31 (b) 8 km. If we consider the variation of g with altitude the height is somewhat more, about 8.2 km.

Chapter 11

11.1 Neon: $-248.58^\circ\text{C} = -415.44^\circ\text{F}$;

CO_2 : $-56.60^\circ\text{C} = -69.88^\circ\text{F}$

$$\text{(use } t_{\text{F}} = \frac{9}{5}t_{\text{C}} + 32\text{)}$$

11.2 $T_{\text{A}} = (4/7) T_{\text{B}}$

11.3 384.8 K

11.4 (a) Triple-point has a *unique* temperature; fusion point and boiling point temperatures depend on pressure; (b) The other fixed point is the absolute zero itself; (c) Triple-point is 0.01°C , not 0°C ; (d) 491.69.

11.5 (a) $T_A = 392.69$ K, $T_B = 391.98$ K; (b) The discrepancy arises because the gases are not perfectly ideal. To reduce the discrepancy, readings should be taken for lower and lower pressures and the plot between temperature measured versus absolute pressure of the gas at triple point should be extrapolated to obtain temperature in the limit pressure tends to zero, when the gases approach ideal gas behaviour.

11.6 Actual length of the rod at $45.0^\circ\text{C} = (63.0 + 0.0136)$ cm = 63.0136 cm. (However, we should say that change in length up to three significant figures is 0.0136 cm, but the total length is 63.0 cm, up to three significant places. Length of the same rod at $27.0^\circ\text{C} = 63.0$ cm.

11.7 When the shaft is cooled to temperature -69°C the wheel can slip on the shaft.

11.8 The diameter increases by an amount $= 1.44 \times 10^{-2}$ cm.

11.9 3.8×10^2 N

11.10 Since the ends of the combined rod are not clamped, each rod expands freely.

$$\Delta l_{\text{brass}} = 0.21 \text{ cm}, \Delta l_{\text{steel}} = 0.126 \text{ cm} = 0.13 \text{ cm}$$

Total change in length = 0.34 cm. No 'thermal stress' is developed at the junction since the rods freely expand.

11.11 $0.0147 = 1.5 \times 10^{-2}$

11.12 103°C

11.13 1.5 kg

11.14 $0.43 \text{ J g}^{-1} \text{ K}^{-1}$; smaller

11.15 The gases are diatomic, and have other degrees of freedom (i.e. have other modes of motion) possible besides the translational degrees of freedom. To raise the temperature of the gas by a certain amount, heat is to be supplied to increase the average energy of all the modes. Consequently, molar specific heat of diatomic gases is more than that of monatomic gases. It can be shown that if only rotational modes of motion are considered, the molar specific heat of diatomic gases is nearly $(5/2) R$ which agrees with the observations for all the gases listed in the table, except chlorine. The higher value of molar specific heat of chlorine indicates that besides rotational modes, vibrational modes are also present in chlorine at room temperature.

11.16 4.3 g/min

11.17 3.7 kg

11.18 238°C

11.20 9 min

11.21 (a) At the triple point temperature = -56.6°C and pressure = 5.11 atm.

(b) Both the boiling point and freezing point of CO_2 decrease if pressure decreases.

(c) The critical temperature and pressure of CO_2 are 31.1°C and 73.0 atm, respectively. Above this temperature, CO_2 will not liquefy even if compressed to high pressures.

(d) (a) vapour (b) solid (c) liquid

11.22 (a) No, vapour condenses to solid directly.

(b) It condenses to solid directly without passing through the liquid phase.

(c) It turns to liquid phase and then to vapour phase. The fusion and boiling points are where the horizontal line on $P-T$ diagram at the constant pressure of 10 atm intersects the fusion and vaporisation curves.

(d) It will not exhibit any clear transition to the liquid phase, but will depart more and more from ideal gas behaviour as its pressure increases.

Chapter 12

12.1 16 g per min

12.2 934 J

12.4 2.64

12.5 16.9 J

12.6 (a) 0.5 atm (b) zero (c) zero (assuming the gas to be ideal) (d) No, since the process (called free expansion) is rapid and cannot be controlled. The intermediate states are non-equilibrium states and do not satisfy the gas equation. In due course, the gas does return to an equilibrium state.

12.7 15%, 3.1×10^9 J

12.8 25 W

12.9 450 J

12.10 10.4

Chapter 13

13.1 4×10^{-4}

13.3 (a) The dotted plot corresponds to 'ideal' gas behaviour; (b) $T_1 > T_2$; (c) 0.26 J K^{-1} ; (d) No, 6.3×10^{-5} kg of H_2 would yield the same value

13.4 0.14 kg

13.5 $5.3 \times 10^{-6} \text{ m}^3$

13.6 6.10×10^{26}

13.7 (a) 6.2×10^{-21} J (b) 1.24×10^{-19} J (c) 2.1×10^{-16} J

13.8 Yes, according to Avogadro's law. No, v_{rms} is largest for the lightest of the three gases; neon.

13.9 2.52×10^3 K

13.10 Use the formula for mean free path :

$$\bar{l} = \frac{1}{\sqrt{2}\pi n d^2}$$

where d is the diameter of a molecule. For the given pressure and temperature $N/V = 5.10 \times 10^{25} \text{ m}^{-3}$ and $d = 1.0 \times 10^{-7} \text{ m}$. $v_{\text{rms}} = 5.1 \times 10^2 \text{ m s}^{-1}$.

collisional frequency $= \frac{v_{\text{rms}}}{\bar{l}} = 5.1 \times 10^9 \text{ s}^{-1}$. Time taken for the collision $= d / v_{\text{rms}} = 4 \times 10^{-13} \text{ s}$.

Time taken between successive collisions $= 1 / v_{\text{rms}} = 2 \times 10^{-10} \text{ s}$. Thus the time taken between successive collisions is 500 times the time taken for a collision. Thus a molecule in a gas moves essentially free for most of the time.

13.11 Nearly 24 cm of mercury flows out, and the remaining 52 cm of mercury thread plus the 48 cm of air above it remain in equilibrium with the outside atmospheric pressure (We assume there is no change in temperature throughout).

13.12 Oxygen

13.14 Carbon[1.29 Å]; Gold [1.59 Å]; Liquid Nitrogen [1.77 Å]; Lithium [1.73 Å]; Liquid fluorine[1.88 Å]

Chapter 14

14.1 (b), (c)

14.2 (b) and (c); SHM; (a) and (d) represent periodic but not SHM [A polyatomic molecule has a number of natural frequencies; so in general, its vibration is a superposition of SHM's of a number of different frequencies. This superposition is periodic but not SHM].

14.3 (b) and (d) are periodic, each with a period of 2 s; (a) and (c) are not periodic. [Note in (c), repetition of merely one position is not enough for motion to be periodic; the entire motion during one period must be repeated successively].

14.4 (a) Simple harmonic, $T = (2\pi/\omega)$; (b) periodic, $T = (2\pi/\omega)$ but not simple harmonic; (c) simple harmonic, $T = (\pi/\omega)$; (d) periodic, $T = (2\pi/\omega)$ but not simple harmonic; (e) non-periodic; (f) non-periodic (physically not acceptable as the function $\rightarrow \infty$ as $t \rightarrow \infty$).

14.5 (a) 0, +, + ; (b) 0, -, - ; (c) -, 0, 0 ; (d) -, -, - ; (e) +, +, + ; (f) -, -, -.

14.6 (c) represents a simple harmonic motion.

14.7 $A = \sqrt{2}$ cm, $\phi = 7\pi/4$; $B = \sqrt{2}$ cm, $\alpha = \pi/4$.

14.8 219 N

14.9 Frequency 3.2 s^{-1} ; maximum acceleration of the mass 8.0 m s^{-2} ; maximum speed of the mass 0.4 m s^{-1} .

14.10 (a) $x = 2 \sin 20t$
 (b) $x = 2 \cos 20t$
 (c) $x = -2 \cos 20t$

where x is in cm. These functions differ neither in amplitude nor frequency. They differ in initial phase.

14.11 (a) $x = -3 \sin \pi t$ where x is in cm.

(b) $x = -2 \cos \frac{\pi}{2} t$ where x is in cm.

14.13 (a) F/k for both (a) and (b).

(b) $T = 2\pi \sqrt{\frac{m}{k}}$ for (a) and $2\pi \sqrt{\frac{m}{2k}}$ for (b)

14.14 100 m/min

14.15 8.4 s

14.16 (a) For a simple pendulum, k itself is proportional to m , so m cancels out.

(b) $\sin \theta < \theta$; if the restoring force, $mg \sin \theta$ is replaced by $mg\theta$, this amounts to effective reduction in angular acceleration [Eq.(14.27)] for large angles and hence

an increase in time period T over that given by the formula $T = 2\pi \sqrt{\frac{l}{g}}$ where one assumes $\sin \theta = \theta$.

(c) Yes, the motion in the wristwatch depends on spring action and has nothing to do with acceleration due to gravity.

(d) Gravity disappears for a man under free fall, so frequency is zero.

14.17 $T = 2\pi \sqrt{\frac{l}{\sqrt{g^2 + v^4} / R^2}}$. Hint: Effective acceleration due to gravity will get reduced due to radial acceleration v^2/R acting in the horizontal plane.

14.18 In equilibrium, weight of the cork equals the up thrust. When the cork is depressed by an amount x , the net upward force is $Ax\rho_l g$. Thus the force constant $k = A\rho_l g$.

Using $m = Ah\rho$, and $T = 2\pi \sqrt{\frac{m}{k}}$ one gets the given expression.

14.19 When both the ends are open to the atmosphere, and the difference in levels of the liquid in the two arms is h , the net force on the liquid column is $Ah\rho g$ where A is the area of cross-section of the tube and ρ is the density of the liquid. Since restoring force is proportional to h , motion is simple harmonic.

14.20 $T = 2\pi \sqrt{\frac{Vm}{Ba^2}}$ where B is the bulk modulus of air. For isothermal changes $B = P$.

14.21 (a) $5 \times 10^4 \text{ N m}^{-1}$; (b) 1344.6 kg s^{-1}

14.22 Hint: Average K.E. = $\frac{1}{T} \int_0^T \frac{1}{2}mv^2 dt$; Average P.E. = $\frac{1}{T} \int_0^T \frac{1}{2}kx^2 dt$

14.23 Hint: The time period of a torsional pendulum is given by $T = 2\pi \sqrt{\frac{I}{\alpha}}$, where I is the

moment of inertia about the axis of rotation. In our case $I = \frac{1}{2}MR^2$, where M is the mass of the disk and R its radius. Substituting the given values, $\alpha = 2.0 \text{ N m rad}^{-1}$.

14.24 (a) $-5\pi^2 \text{ m s}^{-2}$; 0; (b) $-3\pi^2 \text{ m s}^{-2}$; $0.4\pi \text{ m s}^{-1}$; (c) 0; $0.5\pi \text{ m s}^{-1}$

14.25 $\sqrt{\left(x_0^2 + \frac{v_0^2}{\omega^2} \right)}$

Chapter 15

15.1 0.5 s

15.2 8.7 s

15.3 $2.06 \times 10^4 \text{ N}$

15.4 Assume ideal gas law: $P = \frac{\rho RT}{M}$, where ρ is the density, M is the molecular mass, and

T is the temperature of the gas. This gives $v = \sqrt{\frac{\gamma RT}{M}}$. This shows that v is:

- (a) Independent of pressure.
- (b) Increases as \sqrt{T} .
- (c) The molecular mass of water (18) is less than that of N_2 (28) and O_2 (32).

Therefore as humidity increases, the effective molecular mass of air decreases and hence v increases.

15.5 The converse is not true. An obvious requirement for an acceptable function for a travelling wave is that it should be finite everywhere and at all times. Only function (c) satisfies this condition, the remaining functions cannot possibly represent a travelling wave.

15.6 (a) 3.4×10^{-4} m (b) 1.49×10^{-3} m

15.7 4.1×10^{-4} m

15.8 (a) A travelling wave. It travels from right to left with a speed of 20 ms^{-1} .
(b) 3.0 cm, 5.7 Hz
(c) $\pi/4$
(d) 3.5 m

15.9 All the graphs are sinusoidal. They have same amplitude and frequency, but different initial phases.

15.10 (a) $6.4 \pi \text{ rad}$
(b) $0.8 \pi \text{ rad}$
(c) $\pi \text{ rad}$
(d) $(\pi/2) \text{ rad}$

15.11 (a) Stationary wave
(b) $l = 3 \text{ m}$, $n = 60 \text{ Hz}$, and $v = 180 \text{ m s}^{-1}$ for each wave
(c) 648 N

15.12 (a) All the points except the nodes on the string have the same frequency and phase, but not the same amplitude.
(b) 0.042 m

15.13 (a) Stationary wave.
(b) Unacceptable function for any wave.
(c) Travelling harmonic wave.
(d) Superposition of two stationary waves.

15.14 (a) 79 m s^{-1}
(b) 248 N

15.15 347 m s^{-1}

Hint : $v_n = \frac{(2n-1)v}{4l}$; $n = 1, 2, 3, \dots$ for a pipe with one end closed

15.16 5.06 km s^{-1}

15.17 First harmonic (fundamental); No.

15.18 318 Hz

15.20 (i) (a) 412 Hz, (b) 389 Hz, (ii) 340 m s^{-1} in each case.

15.21 400 Hz, 0.875 m , 350 m s^{-1} . No, because in this case, with respect to the medium, both the observer and the source are in motion.

15.22 (a) 1.666 cm , 87.75 cm s^{-1} ; No, the velocity of wave propagation is -24 m s^{-1}

(b) All points at distances of $n \lambda$ ($n = \pm 1, \pm 2, \pm 3, \dots$) where $\lambda = 12.6 \text{ m}$ from the point $x = 1 \text{ cm}$.

15.23 (a) The pulse does not have a definite wavelength or frequency, but has a definite speed of propagation (in a non-dispersive medium).

(b) No

15.24 $y = 0.05 \sin(\omega t - kx)$; here $\omega = 1.61 \times 10^3 \text{ s}^{-1}$, $k = 4.84 \text{ m}^{-1}$; x and y are in m.

15.25 45.9 kHz

15.26 1920 km

15.27 42.47 kHz

BIBLIOGRAPHY

TEXTBOOKS

For additional reading on the topics covered in this book, you may like to consult one or more of the following books. Some of these books however are more advanced and contain many more topics than this book.

1. **Ordinary Level Physics**, A.F. Abbott, Arnold-Heinemann (1984).
2. **Advanced Level Physics**, M. Nelkon and P. Parker, 6th Edition Arnold-Heinemann (1987).
3. **Advanced Physics**, Tom Duncan, John Murray (2000).
4. **Fundamentals of Physics**, David Halliday, Robert Resnick and Jearl Walker, 7th Edition John Wiley (2004).
5. **University Physics**, H.D. Young, M.W. Zemansky and F.W. Sears, Narosa Pub. House (1982).
6. **Problems in Elementary Physics**, B. Bukhovtsa, V. Krivchenkov, G. Myakishev and V. Shalnov, MIR Publishers, (1971).
7. **Lectures on Physics** (3 volumes), R.P. Feynman, Addison – Wesley (1965).
8. **Berkeley Physics Course** (5 volumes) McGraw Hill (1965).
 - a. Vol. 1 – Mechanics: (Kittel, Knight and Ruderman)
 - b. Vol. 2 – Electricity and Magnetism (E.M. Purcell)
 - c. Vol. 3 – Waves and Oscillations (Frank S. Crawford)
 - d. Vol. 4 – Quantum Physics (Wichmann)
 - e. Vol. 5 – Statistical Physics (F. Reif)
9. **Fundamental University Physics**, M. Alonso and E. J. Finn, Addison – Wesley (1967).
10. **College Physics**, R.L. Weber, K.V. Manning, M.W. White and G.A. Weygand, Tata McGraw Hill (1977).
11. **Physics: Foundations and Frontiers**, G. Gamow and J.M. Cleveland, Tata McGraw Hill (1978).
12. **Physics for the Inquiring Mind**, E.M. Rogers, Princeton University Press (1960)
13. **PSSC Physics Course**, DC Heath and Co. (1965) Indian Edition, NCERT (1967)
14. **Physics Advanced Level**, Jim Breithaupt, Stanley Thornes Publishers (2000).
15. **Physics**, Patrick Fullick, Heinemann (2000).

16. **Conceptual Physics**, Paul G. Hewitt, Addison-Wesley (1998).
17. **College Physics**, Raymond A. Serway and Jerry S. Faughn, Harcourt Brace and Co. (1999).
18. **University Physics**, Harris Benson, John Wiley (1996).
19. **University Physics**, William P. Crummet and Arthur B. Western, Wm.C. Brown (1994).
20. **General Physics**, Morton M. Sternheim and Joseph W. Kane, John Wiley (1988).
21. **Physics**, Hans C. Ohanian, W.W. Norton (1989).
22. **Advanced Physics**, Keith Gibbs, Cambridge University Press(1996).
23. **Understanding Basic Mechanics**, F. Reif, John Wiley (1995).
24. **College Physics**, Jerry D. Wilson and Anthony J. Buffa, Prentice-Hall (1997).
25. **Senior Physics, Part – I**, I.K. Kikoin and A.K. Kikoin, Mir Publishers (1987).
26. **Senior Physics, Part – II**, B. Bekhovtsev, Mir Publishers (1988).
27. **Understanding Physics**, K. Cummings, Patrick J. Cooney, Priscilla W. Laws and Edward F. Redish, John Wiley (2005)
28. **Essentials of Physics**, John D. Cutnell and Kenneth W. Johnson, John Wiley (2005)

GENERAL BOOKS

For instructive and entertaining general reading on science, you may like to read some of the following books. Remember however, that many of these books are written at a level far beyond the level of the present book.

1. **Mr. Tompkins** in paperback, G. Gamow, Cambridge University Press (1967).
2. **The Universe and Dr. Einstein**, C. Barnett, Time Inc. New York (1962).
3. **Thirty years that Shook Physics**, G. Gamow, Double Day, New York (1966).
4. **Surely You're Joking, Mr. Feynman**, R.P. Feynman, Bantam books (1986).
5. **One, Two, Three... Infinity**, G. Gamow, Viking Inc. (1961).
6. **The Meaning of Relativity**, A. Einstein, (Indian Edition) Oxford and IBH Pub. Co (1965).
7. **Atomic Theory and the Description of Nature**, Niels Bohr, Cambridge (1934).
8. **The Physical Principles of Quantum Theory**, W. Heisenberg, University of Chicago Press (1930).
9. **The Physics- Astronomy Frontier**, F. Hoyle and J.V. Narlikar, W.H. Freeman (1980).
10. **The Flying Circus of Physics with Answer**, J. Walker, John Wiley and Sons (1977).
11. **Physics for Everyone** (series), L.D. Landau and A.I. Kitaigorodski, MIR Publisher (1978).
 - Book 1: Physical Bodies
 - Book 2: Molecules
 - Book 3: Electrons
 - Book 4: Photons and Nuclei.
12. **Physics can be Fun**, Y. Perelman, MIR Publishers (1986).
13. **Power of Ten**, Philip Morrison and Eames, W.H. Freeman (1985).
14. **Physics in your Kitchen Lab.**, I.K. Kikoin, MIR Publishers (1985).
15. **How Things Work : The Physics of Everyday Life**, Louis A. Bloomfield, John Wiley (2005)
16. **Physics Matters : An Introduction to Conceptual Physics**, James Trefil and Robert M. Hazen, John Wiley (2004).

INDEX

A

Absolute scale temperature 280
Absolute zero 280
Acceleration (linear) 45
Acceleration due to gravity 49, 189
Accuracy 22
Action-reaction 97
Addition of vectors 67
Adiabatic process 311, 312
Aerofoil 262
Air resistance 79
Amplitude 344, 372
Angle of contact 267, 268
Angstrom 21
Angular Acceleration 154
Angular displacement 342
Angular frequency 344, 373
Angular momentum 155
Angular velocity 152
Angular wave number 372
Antinodes 381, 382
Archimedes Principle 255
Area expansion 281
Atmospheric pressure 253
Average acceleration 45, 74
Average speed 42
Average velocity 42
Avogardo's law 325

B

Banked road 104
Barometer 254
Beat frequency 383
Beats 382, 383
Bending of beam 244
Bernoulli's Principle 258
Blood pressure 276
Boiling point 287
Boyle's law 326
Buckling 244

Bulk modulus 242
Buoyant force 255

C

Calorimeter 285
Capillary rise 268
Capillary waves 370
Carnot engine 316
Central forces 186
Centre of Gravity 161
Centre of mass 144
Centripetal acceleration 81
Centripetal force 104
Change of state 287
Charle's law 326
Chemical Energy 126
Circular motion 104
Clausius statement 315
Coefficient of area expansion 283
Coefficient of linear expansion 281
Coefficient of performance 314
Coefficient of static friction 101
Coefficient of viscosity 262
Coefficient of volume expansion 281
Cold reservoir 313
Collision 129
Collision in two dimensions 131
Compressibility 242, 243
Compressions 368, 369, 374
Compressive stress 236, 243
Conduction 290
Conservation laws 12
Conservation of angular momentum 157, 173
Conservation of Mechanical Energy 121
Conservation of momentum 98
Conservative force 121
Constant acceleration 46, 75
Contact force 100
Convection 293
Couple 159
Crest 371
Cyclic process 312

D

Dalton's law of partial pressure 325
 Damped oscillations 355
 Damped simple Harmonic motion 355
 Damping constant 355
 Damping force 355
 Derived units 16
 Detergent action 269
 Diastolic pressure 277
 Differential calculus 61
 Dimensional analysis 32
 Dimensions 31
 Displacement vector 66
 Displacement 40
 Doppler effect 385, 386
 Doppler shift 387
 Driving frequency 358
 Dynamics of rotational motion 169

E

Efficiency of heat engine 313
 Elastic Collision 129
 Elastic deformation 236, 238
 Elastic limit 238
 Elastic moduli 239
 Elasticity 235
 Elastomers 239
 Electromagnetic force 8
 Energy 117
 Equality of vectors 66
 Equation of continuity 257
 Equilibrium of a particle 257
 Equilibrium of Rigid body 99
 Equilibrium position 158
 Errors in measurement 341, 342, 353
 Escape speed 22
 193

F

First law of Thermodynamics 307
 Fluid pressure 251
 Force 94
 Forced frequency 357
 Forced oscillations 357, 358
 Fracture point 238
 Free Fall 49
 Free-body diagram 100
 Frequency of periodic motion 342, 372
 Friction 101
 Fundamental Forces 6
 Fundamental mode 381
 Fusion 287

G

Gauge pressure 253
 Geocentric model 183

Geostationary satellite 196
 Gravitational constant 189
 Gravitational Force 8, 192
 Gravitational potential energy 191
 Gravity waves 370

H

Harmonic frequency 380, 381
 Harmonics 380, 381
 Heat capacity 284
 Heat engines 313
 Heat pumps 313
 Heat 279
 Heliocentric model 183
 Hertz 343
 Hooke's law 238
 Horizontal range 78
 Hot reservoir 313
 Hydraulic brakes 255, 256
 Hydraulic lift 255, 256
 Hydraulic machines 255
 Hydraulic pressure 238
 Hydraulic stress 238, 243
 Hydrostatic paradox 253

I

Ideal gas equation 280
 Ideal gas 280, 325
 Impulse 96
 Inelastic collision 129
 Initial phase angle 372
 Instantaneous acceleration 74
 Instantaneous speed 45
 Instantaneous velocity 43
 Interference 377
 Internal energy 306, 330
 Irreversible engine 315, 317
 Irreversible processes 315
 Isobaric process 311, 312
 Isochoric process 311, 312
 Isotherm 310
 Isothermal process 311

K

Kelvin-Planck statement 315
 Kepler's laws of planetary motion 184
 Kinematics of Rotational Motion 167
 Kinematics 39
 Kinetic energy of rolling motion 174
 Kinetic Energy 117
 Kinetic interpretation of temperature 329
 Kinetic theory of gases 328

L

Laminar flow 258, 264
 Laplace correction 376

Latent heat of fusion	290	O	
Latent heat of vaporisation	290	Odd harmonics	382
Latent heat	289	Orbital velocity/speed	194
Law of cosine	72	Order of magnitude	28
Law of equipartition of energy	332	Oscillations	342
Law of Inertia	90	Oscillatory motion	342
Law of sine	72		
Linear expansion	281	P	
Linear harmonic oscillator	349, 351	Parallax method	18
Linear momentum	155	Parallelogram law of addition of vectors	66
Longitudinal strain	236	Pascal's law	252
Longitudinal strain	236, 239	Path length	40
Longitudinal stress	236	Path of projectile	78
Longitudinal Wave	369, 376	Periodic force	358
		Periodic motion	342
M		Periodic time	342
Magnus effect	261	Permanent set	238
Manometer	254	Phase angle	344
Mass Energy Equivalence	126	Phase constant	344
Maximum height of projectile	78	Pipe open at both ends	382
Maxwell Distribution	331	Pipe open at one end	381
Mean free path	324, 335	Pitch	384
Measurement of length	18	Plastic deformation	238
Measurement of mass	21	Plasticity	235
Measurement of temperature	279	Polar satellite	196
Measurement of time	22	Position vector and displacement	73
Melting point	286	Potential energy of a spring	123
Modes	380	Potential energy	120
Modulus of elasticity	238	Power	128
Modulus of rigidity	242	Precession	143
Molar specific heat capacity	284, 308	Pressure gauge	253
at constant pressure		Pressure of an ideal gas	328
Molar specific heat capacity	284, 308	Pressure	250
at constant volume		Principle of Conservation of Energy	128
Molar specific heat capacity	284	Principle of moments	160
Molecular nature of matter	323	Progressive wave	373
Moment of Inertia	163	Projectile motion	77
Momentum	93	Projectile	77
Motion in a plane	72	Propagation constant	371
Multiplication of vectors	67	Pulse	369
Musical instruments	384		
		Q	
N		Quasi-static process	310, 311
Natural frequency	358		
Newton's first law of motion	91	R	
Newton's Law of cooling	295	Radiation	294
Newton's law of gravitation	185	Radius of Gyration	164
Newton's second law of motion	93	Raman effect	11
Newton's third law of motion	96	Rarefactions	369
Newton's formula for speed of sound	377	Ratio of specific heat capacities	334
Nodes	381	Reaction time	51
Normal Modes	381, 382, 384	Real gases	326
Note	384, 385	Rectilinear motion	39
Nuclear Energy	126	Reductionism	2
Null vector	68	Reflected wave	379
		Reflection of waves	378

Refracted wave	379	Surface tension	265
Refrigerator	313	Symmetry	146
Regelation	287	System of units	16
Relative velocity in two dimensions	76	Systolic pressure	277
Relative velocity	51		
Resolution of vectors	69		
Resonance	358	T	
Restoring force	236, 350, 369	Temperature	279
Reversible engine	316, 317	Tensile strength	238
Reversible processes	315	Tensile stress	236
Reynolds number	264	Terminal velocity	264
Rigid body	141	Theorem of parallel axes	167
Rolling motion	173	Theorem of perpendicular axes	165
Root mean square speed	329	Thermal conductivity	291
Rotation	142	Thermal equilibrium	304
		Thermal expansion	281
		Thermal stress	284
		Thermodynamic processes	310
S.H.M. (Simple Harmonic Motion)	343	Thermodynamic state variables	309
Scalar-product	114	Thermodynamics	3, 303
Scalars	65	Time of flight	78
Scientific Method	1	Torque	154
Second law of Thermodynamics	314	Torricelli's Law	259, 260
Shear modulus	242	Trade wind	294
Shearing strain	237	Transmitted wave	379
Shearing stress	237	Travelling wave	380
SI units	16	Triangle law of addition of vectors	66
Significant figures	27	Triple point	288
Simple pendulum	343, 353	Trough	371
Soap bubbles	268	Tune	384
Sonography	387	Turbulent flow	258, 259
Sound	375		
Specific heat capacity of Solids	308, 335	U	
Specific heat capacity of Gases	333, 334	Ultimate strength	238
Specific heat capacity of Water	335	Ultrasonic waves	387
Specific heat capacity	285, 308	Unification of Forces	10
Speed of efflux	259	Unified Atomic Mass Unit	21
Speed of Sound	375, 376	Uniform circular motion	79
Speed of Transverse wave on a stretched string	375, 376	Uniform Motion	41
Sphygmomanometer	277	Uniformly accelerated motion	47
Spring constant	352, 355	Unit vectors	70
Standing waves	380		
Stationary waves	382	V	
Steady flow	257	Vane	356
Stethoscope	281	Vaporisation	288
Stokes' law	263	Vector-product	151
Stopping distance	50	Vectors	66
Strain	236	Velocity amplitude	349
Streamline flow	257, 258	Venturi meter	260
Streamline	257, 258	Vibration	341
Stress	236	Viscosity	262
Stress-strain curve	238	Volume expansion	281
Stretched string	374	Volume Strain	238
Sublimation	294		
Subtraction of vectors	67	W	
Superposition principle	378	Wave equation	374
Surface energy	265	Wavelength	372
		Wave speed	374

Waves	368	Y	
Waxing and waning of sound	385	Yield Point	238
Weak nuclear force	9	Yield strength	238
Weightlessness	197	Young's modulus	239
Work done by variable force	118		
Work	116	Z	
Work-Energy Theorem	116	Zeroth law of Thermodynamics	305
Working substance	313		

not to be republished

NOTES

not to be republished
© NCERT