Chapter 3. Compound Interest

Ex 3.1

Answer 1.

(i) Rs25000 for $1\frac{1}{2}$ years at 10% per annum.

Here P = Rs25000, t =
$$1\frac{1}{2}$$
 years, r = 10%

Now, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 25000\left(1 + \frac{10}{100}\right)$$

= $25000\left(1 + \frac{1}{10}\right) = 25000\left(\frac{11}{10}\right)$
= 27500

Thus, principle for the next 6 months = Rs27500

Interest for the next 6 months =
$$\frac{27500 \times 6 \times 10}{100 \times 12}$$
 = 1375

Therefore, amount after
$$1\frac{1}{2}$$
 years = Rs27500 + Rs1375 = Rs28875

(ii) Rs32000 for 2 years at $7\frac{1}{2}$ % per annum.

Here
$$P_1 = Rs32000$$
 and $r = 7\frac{1}{2}\% = \frac{15}{2}\%$

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 32000\left(1 + \frac{15}{2 \times 100}\right)$$

= $32000\left(1 + \frac{3}{40}\right) = 32000\left(\frac{43}{40}\right)$
= 34400

Thus,
$$P_2 = Rs34400$$
 and $r = \frac{15}{2}\%$

So, Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 34400\left(1 + \frac{15}{2 \times 100}\right)$$

= $34400\left(1 + \frac{3}{40}\right) = 34400\left(\frac{43}{40}\right)$
= 36980

(iii) Rs10000 for $2\frac{1}{2}$ years at 6% per annum.

Here
$$P_1 = Rs10000$$
 and $r = 6\%$

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 10000\left(1 + \frac{6}{100}\right)$$

= $10000 \times \frac{106}{100} = 10600$

Thus, $P_2 = Rs10600$ and r = 6%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 10600\left(1 + \frac{6}{100}\right)$$

= $10600 \times \frac{106}{100} = 11236$

Thus, principle for the next 6 months = Rs11236

Interest for the next 6 months =
$$\frac{11236 \times 6 \times 6}{100 \times 12}$$
 = 337.08

Therefore, amount after $1\frac{1}{2}$ years = Rs11236 + Rs337.08 = Rs11573.08

(iv) Rs24000 for $1\frac{1}{2}$ years at $7\frac{1}{2}$ % per annum.

Here P = Rs24000, t =
$$1\frac{1}{2}$$
 years, r = $7\frac{1}{2}$ % = $\frac{15}{2}$ %

Now, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 24000\left(1 + \frac{15}{2 \times 100}\right)$$

= $24000\left(1 + \frac{3}{40}\right) = 24000\left(\frac{43}{40}\right)$
= 25800

Thus, principle for the next 6 months = Rs25800

Interest for the next 6 months =
$$\frac{25800 \times 15 \times 6}{200 \times 12}$$
 = 967.50

Therefore, amount after $1\frac{1}{2}$ years = Rs25800 + Rs967.50 = Rs26767.50

Answer 2A.

For 1st year: P = Rs. 16000, R = 15% and T = 1 year

:. Interest = Rs.
$$\frac{16000 \times 15 \times 1}{100}$$
 = Rs. 2400

And, amount = Rs. 16000 + Rs. 2400 = Rs. 18400

For 2nd year: P = Rs. 18400, R = 12% and T = 1 year

:. Interest = Rs.
$$\frac{18400 \times 12 \times 1}{100}$$
 = Rs. 2208

And, amount = Rs. 18400 + Rs. 2208 = Rs. 20608

:. Required amount = Rs. 20608

And, Compound Interest = A - P = Rs. 20608 - Rs. 16000 = Rs. 4608

Answer 2B.

For 1st year: P = Rs. 17500, R = 8% and T = 1 year

:. Interest = Rs.
$$\frac{17500 \times 8 \times 1}{100}$$
 = Rs. 1400

And, amount = Rs. 17500 + Rs. 1400 = Rs. 18900

For 2nd year: P = Rs. 18900, R = 10% and T = 1 year

:. Interest = Rs.
$$\frac{18900 \times 10 \times 1}{100}$$
 = Rs. 1890

And, amount = Rs. 18900 + Rs. 1890 = Rs. 20790

For 3rd year: P = Rs. 20790, R = 12% and T = 1 year

:. Interest = Rs.
$$\frac{20790 \times 12 \times 1}{100}$$
 = Rs. 2494.80

And, amount = Rs.20790 + Rs.2494.80 = Rs.23284.80

:. Required amount = Rs. 23284.80

And, Compound Interest = A - P = Rs. 23284.80 - Rs. 17,500 = Rs. 5784.80

Answer 3.

Here $P_1 = Rs20000$ and r = 10%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 20000\left(1 + \frac{10}{100}\right)$$

= $20000 \times \frac{110}{100} = 22000$

Thus, $P_2 = Rs22000$ and r = 10%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 22000\left(1 + \frac{10}{100}\right)$$

= $22000 \times \frac{110}{100} = 24200$

Thus, $P_3 = Rs24200$ and r = 10%

Amount after 3 year =
$$P\left(1 + \frac{r}{100}\right) = 24200\left(1 + \frac{10}{100}\right)$$

= $24200 \times \frac{110}{100} = 26620$

Hence, Amount = Rs 26620

Also, CI = A - P = Rs 26620 - Rs 20000 = Rs 6620

Answer 4.

For 1st year: P = Rs. 5000, R = 10% and T = 1 year

:. Interest = Rs.
$$\frac{5000 \times 10 \times 1}{100}$$
 = Rs. 500

And, amount = Rs.5000 + Rs.500 = Rs.5500

For 2nd year: P = Rs. 5500, R = 10% and T = 1 year

:. Interest = Rs.
$$\frac{5500 \times 10 \times 1}{100}$$
 = Rs. 550

And, amount = Rs.5500 + Rs.550 = Rs.6050

For 3rd year: P = Rs. 6050, R = 10% and T = 1 year

:. Interest = Rs.
$$\frac{6050 \times 10 \times 1}{100}$$
 = Rs. 605

:. Compound interest for 3rd year is Rs. 605.

Answer 5.

For 1st year: P = Rs. 25600, R = 5% and T = 1 year

:. Interest = Rs. $\frac{25600 \times 5 \times 1}{100}$ = Rs. 1280

And, amount = Rs.25600 + Rs.1280 = Rs.26880

For 2nd year: P = Rs. 26880, R = 5% and T = 1 year

:. Interest = Rs. $\frac{26880 \times 5 \times 1}{100}$ = Rs. 1344

And, amount = Rs.26880 + Rs.1344 = Rs.28224

:. Amount at the end of 2nd year is Rs. 28224.

Answer 6.

Here $P_1 = Rs7500$ and rate of interest for half year (r) = 4%

So, Amount after
$$\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 7500\left(1 + \frac{4}{100}\right)$
= $7500 \times \frac{104}{100} = 7800$

Thus, $P_2 = Rs7800$ and r = 4%

Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 7800\left(1 + \frac{4}{100}\right)$$

= $7800 \times \frac{104}{100} = 8112$

Thus, $P_3 = Rs8112$ and r = 4%

Amount after
$$1\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 8112\left(1 + \frac{4}{100}\right)$
= $8112 \times \frac{104}{100} = 8436.48$

Hence, Amount = Rs 8436.48

Also, CI = A - P = Rs 8436.48 - Rs 7500 = Rs 936.48

Answer 7.

Since, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right)$$

 $\Rightarrow 27600 = 24000 \left(1 + \frac{r}{100}\right)$
 $\Rightarrow 1 + \frac{r}{100} = \frac{27600}{24000} = \frac{23}{20}$
 $\Rightarrow \frac{r}{100} = \frac{23}{20} - 1 = \frac{3}{20}$
 $\Rightarrow r = \frac{100 \times 3}{20} = 15$
Amount after 2 year = $P\left(1 + \frac{r}{100}\right) = 27600 \left(1 + \frac{15}{100}\right)$

Answer 8.

Here $P_1 = Rs14000$ and r = 5%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 14000\left(1 + \frac{5}{100}\right)$$

= $14000 \times \frac{105}{100} = 14700$

 $= 27600 \times \frac{115}{100} = 31740$

Thus, $P_2 = Rs14700$ and r = 8%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 14700\left(1 + \frac{8}{100}\right)$$

= $14700 \times \frac{108}{100} = 15876$

Hence, Amount = Rs 15876

Answer 9.

Here $P_1 = Rs17500$ and r = 4%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 17500\left(1 + \frac{4}{100}\right)$$

= $17500 \times \frac{104}{100} = 18200$

Thus, $P_2 = Rs18200$ and r = 5%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 18200\left(1 + \frac{5}{100}\right)$$

= $18200 \times \frac{105}{100} = 19110$

Thus, $P_3 = Rs19110$ and r = 6%

Amount after 3 year =
$$P\left(1 + \frac{r}{100}\right) = 19110\left(1 + \frac{6}{100}\right)$$

= $19110 \times \frac{106}{100} = 20256.60$

Hence, Amount = Rs 20256.60

Also, CI = A - P = Rs 20256.60 - Rs 17500 = Rs2756.60

Answer 10.

For 1st half-year: P = Rs. 4000, R = 14% and T = $\frac{1}{2}$ year

Interest = Rs.
$$\frac{4000 \times 14 \times 1}{100 \times 2}$$
 = Rs. 280

And, amount = Rs. 4000 + Rs. 280 = Rs. 4280

For 2nd half-year: P = Rs. 4280, R = 14% and T = $\frac{1}{2}$ year

Interest = Rs.
$$\frac{4280 \times 14 \times 1}{100 \times 2}$$
 = Rs. 299.60

And, amount = Rs. 4280 + Rs. 299.60 = Rs. 4579.60

For 3rd half-year: P = Rs. 4579.60, R = 14% and T = $\frac{1}{2}$ year

Interest = Rs.
$$\frac{4579.60 \times 14 \times 1}{100 \times 2}$$
 = Rs. 320.572

And, amount = Rs. 4579.60 + Rs. 320.572 = Rs. 4900.172

Thus, the amount to be paid at the end of $1\frac{1}{2}$ years is Rs. 4900.172.

Answer 11.

Here $P_1 = Rs42000$ and rate of interest for half year = 4%, t = 4 half years

So, Amount after
$$\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 42000\left(1 + \frac{4}{100}\right)$
= $42000 \times \frac{104}{100} = 43680$

Thus, $P_2 = Rs43680$

Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 43680\left(1 + \frac{4}{100}\right)$$

= $43680 \times \frac{104}{100} = 45427.20$

Thus, $P_3 = Rs45427.20$

Amount after
$$1\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 45427.20\left(1 + \frac{4}{100}\right)$
= $45427.20 \times \frac{104}{100} = 47244.29$

Thus, $P_4 = Rs47244.29$

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 47244.29\left(1 + \frac{4}{100}\right)$$

= $47244.29 \times \frac{104}{100} = 49134.06$

Hence, Amount = Rs 49134.06

Also, CI = A - P = Rs 49134.06 - Rs 42000 = Rs 7134.06

Answer 12.

Case I:

Here P = Rs15000 and r = 10.5%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 15000\left(1 + \frac{10.5}{100}\right)$$

= $15000 \times \frac{110.5}{100} = 16575$

Case II:

Here $P_1 = Rs15000$ and rate of interest for half year (r) = 5%

So, Amount after
$$\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 15000\left(1 + \frac{5}{100}\right)$
= $15000 \times \frac{105}{100} = 15750$

Thus, $P_2 = Rs15750$ and r = 5%

Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 15750\left(1 + \frac{5}{100}\right)$$

= $15750 \times \frac{105}{100} = 16537.50$

Hence the first man gains by Rs16575 - Rs16537.50 = Rs37.50

Answer 13.

Case I:

Here $P_1 = Rs20000$ and r = 12%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 20000\left(1 + \frac{12}{100}\right)$$

= $20000 \times \frac{112}{100} = 22400$

Thus, $P_2 = Rs22400$ and r = 12%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 22400\left(1 + \frac{12}{100}\right)$$

= $22400 \times \frac{112}{100} = 25088$

Thus, $P_3 = Rs25088$ and r = 12%

Amount after 3 year =
$$P\left(1 + \frac{r}{100}\right) = 25088\left(1 + \frac{12}{100}\right)$$

= $25088 \times \frac{112}{100} = 28098.56$

Hence, Amount = Rs 28098.56

Also, CI = A - P = Rs 28098.56 - Rs 20000 = Rs 8098.56

Case II:

Simple interest =
$$\frac{20000 \times 12 \times 3}{100} = 7200$$

Difference between C.I. and S.I. = Rs 8098.56 - Rs 7200 = Rs 898.56

Answer 14.

Since, Simple interest =
$$\frac{P \times r \times t}{100}$$

$$\Rightarrow 1500 = \frac{P \times 4 \times 2}{100} \Rightarrow P = \frac{150000}{8} = 18750$$

Now for CI, P = Rs 18750, r = 4%, t = 2 year

Here P_1 = Rs 18750 and r = 4%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 18750\left(1 + \frac{4}{100}\right)$$

= $18750 \times \frac{104}{100} = 19500$

Thus, $P_2 = Rs19500$ and r = 4%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 19500\left(1 + \frac{4}{100}\right)$$

= $19500 \times \frac{104}{100} = 20280$

Hence, Amount = Rs 20280

Answer 15.

Case I:

Here $P_1 = Rs 5000$ and r = 6%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 5000\left(1 + \frac{6}{100}\right)$$

= $5000 \times \frac{106}{100} = 5300$

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 5300\left(1 + \frac{6}{100}\right)$$

= $5300 \times \frac{106}{100} = 5618$

Thus, $P_3 = Rs 5618$ and r = 6%

Amount after 3 year =
$$P\left(1 + \frac{r}{100}\right) = 5618\left(1 + \frac{6}{100}\right)$$

= $5618 \times \frac{106}{100} = 5955.08$

Hence, Amount = Rs 5955.08

Also, CI = A - P = Rs 5955.08 - Rs 5000 = Rs 955.08

Case II:

Simple interest =
$$\frac{5000 \times 6 \times 3}{100}$$
 = 900

Difference between C.I. and S.I. = Rs 955.08 - Rs 900 = Rs 55.08

Answer 16.

Since Simple interest =
$$\frac{P \times r \times t}{100}$$

$$\Rightarrow 450 = \frac{P \times 4 \times 2}{100} \Rightarrow P = \frac{45000}{8} = 5625$$

Now for CI, P = Rs 5625, r = 4, t = 1 year

Here $P_1 = Rs5625$ and rate of interest for half-yearly = 2%

So, Amount after
$$\frac{1}{2}$$
 year = $P\left(1 + \frac{r}{100}\right) = 5625\left(1 + \frac{2}{100}\right)$
= $5625 \times \frac{102}{100} = 5737.50$

Thus, $P_2 = Rs 5737.50$ and r = 2%

Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 5737.50\left(1 + \frac{2}{100}\right)$$

= $5737.50 \times \frac{102}{100} = 5852.25$

Hence, Amount = Rs 5852.25

Answer 17.

Case I:

Simple interest =
$$\frac{62500 \times 8 \times 2}{100} = 10000$$

Amount = Rs 62500 + Rs 10000 = Rs 72500

Case II:

Here $P_1 = Rs 62500$ and r = 8%

So, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right) = 62500\left(1 + \frac{8}{100}\right)$$

= $62500 \times \frac{108}{100} = 67500$

Thus, $P_2 = Rs 67500$ and r = 8%

Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right) = 67500\left(1 + \frac{8}{100}\right)$$

= $67500 \times \frac{108}{100} = 72900$

Hence, Amount = Rs 72900

Thus, gain in amount = Rs 72900 - Rs 72500 = Rs 400

Answer 18.

For 1st year: P = Rs. 100, R = 10% and T = 1 year

Interest = Rs.
$$\frac{100 \times 10 \times 1}{100}$$
 = Rs. 10

Amount = Rs. 100 + Rs. 10 = Rs. 110

For 2nd year: P = Rs. 110, R = 15% and T = 1 year

Interest = Rs.
$$\frac{110 \times 15 \times 1}{100}$$
 = Rs. 16.50

Amount = Rs. 110 + Rs. 16.50 = Rs. 126.50

When amount is Rs. 126.50, Principal is Rs. 100.

Hence, when amount is Rs. 10120,

Principal = Rs.
$$\frac{10120 \times 100}{126.50}$$
 = Rs. 8000

Answer 19.

To calculate the S.I. paid by Sunil:

P = Rs.50000, R = 10% and T =
$$1\frac{1}{2}$$
 years = $\frac{3}{2}$ years

$$\therefore$$
 S.I. = Rs. $\frac{50000 \times 10 \times 3}{100 \times 2}$ = Rs. 7500

To calculate the C.I. earned by Sunil:

For 1st year: P = Rs.50000, R = 10% and T = 1 year

:. Interest = Rs.
$$\frac{50000 \times 10 \times 1}{100}$$
 = Rs. 5000

And, amount = Rs.50000 + Rs.5000 = Rs.55000

For next half year: P = Rs. 55000, R = 10% and T = $\frac{1}{2}$ year

:. Interest = Rs.
$$\frac{55000 \times 10 \times 1}{100 \times 2}$$
 = Rs. 2750

And, amount = Rs.55000 + Rs.2750 = Rs.57750

∴ Total C.I. earned = Rs.
$$57750 - Rs$$
. $50000 = Rs$. 7750

$$\Rightarrow Sunil's gain in $1\frac{1}{2} \text{ years} = C.I. \text{ earned} - S.I. \text{ paid}$

$$= Rs. 7750 - Rs. 7500$$

$$= Rs. 250$$$$

Answer 20.

Let the value of mobile in the beginning be Rs. 100.

For 1st year, depreciation = 5% of Rs.
$$100 = \frac{5}{100} \times 100 = \text{Rs.} 5$$

Value of machine for second year = Rs. 100 - Rs. 5 = Rs. 95

For 2nd year, depreciation = 5% of Rs.
$$95 = \frac{5}{100} \times 95 = Rs. 4.75$$

Value of machine for third year = Rs. $95 - Rs. 4.75 = Rs. 90.25$

For 3rd year, depreciation = 10% of Rs.
$$90.25 = \frac{10}{100} \times 90.25 = Rs. 9.025$$

Value of machine at the end of third year = Rs. $90.25 - Rs. 9.025 = Rs. 81.225$

Answer 21.

For 1sthalf year: P = Rs. 6500, R = 10% and T = $\frac{1}{2}$ year

Interest = Rs. $\frac{6500 \times 10 \times 1}{100 \times 2}$ = Rs. 325

Amount = Rs. 6500 + Rs. 325 = Rs. 6825

Money paid at the end of 1^{st} half year = Rs. 2000 Balance money for 2^{nd} half year = Rs. 6825 - Rs. 2000 = Rs. 4825

For 2ndhalf year : P = Rs. 4825; R = 10% and T = $\frac{1}{2}$ year

Interest = Rs. $\frac{4825 \times 10 \times 1}{100 \times 2}$ = Rs. 241.25

Amount = Rs. 4825 + Rs. 241.25 = Rs. 5066.25

Money paid at the end of 2^{nd} half year = Rs. 2000 Balance money for 3^{nd} half year = Rs. 5066.25 - Rs. 2000 = Rs. 3066.25

For 3rdhalf year : P = Rs. 3066.25; R = 10% and T = $\frac{1}{2}$ year

Interest = Rs. $\frac{3066.25 \times 10 \times 1}{100 \times 2}$ = Rs. 153.3125

Amount = Rs. 3066.25 + Rs. 153.3125 = Rs. 3219.5625

Money paid at the end of 3rd half year = Rs. 2000

Amount outstanding at the end of 3rd payment

- = Rs. 3219.5625 Rs. 2000
- = Rs. 1219.5625
- = Rs. 1220 (nearest rupee)

Answer 22.

For 1sthalf year: P = Rs. 20000, R = 10% and T = 1 year

Interest = Rs. $\frac{20000 \times 10 \times 1}{100}$ = Rs. 2000

Amount = Rs. 20000 + Rs. 2000 = Rs. 22000

Money paid at the end of 1st half year = Rs. 5000

Balance money for 2^{nd} half year = Rs. 22000 - Rs. 5000 = Rs. 17000

For 2^{nd} half year : P = Rs. 17000; R = 10% and T = 1 year

Interest = Rs. $\frac{17000 \times 10 \times 1}{100}$ = Rs. 1700

Amount = Rs. 17000 + Rs. 1700 = Rs. 18700

Money paid at the end of 2^{nd} half year = Rs. 10000

Balance money for 3rdhalf year = Rs. 18700 - Rs. 10000 = Rs. 8700

For 3^{rd} half year : P = Rs. 8700; R = 10% and T = 1 year

Interest = Rs. $\frac{8700 \times 10 \times 1}{100}$ = Rs. 870

Amount = Rs. 8700 + Rs. 870 = Rs. 9570

A man should pay Rs. 9570 at the end of 3rd year to clear the account.

Answer 23.

Let the value of ring $(P_1) = Rs. 100$.

Appreciation (C.I.) for the 1st year = Rs. $\frac{100 \times 10 \times 1}{100}$ = Rs. 10

: Value of the ring at the end of 1^{st} year (A_1) = Rs. 100 + Rs. 10 = Rs. 110

 \therefore Value of the ring at the beginning of 2nd year (P₂) = Rs. 110

Appreciation (C.I.) for the 2nd year = Rs. $\frac{110 \times 10 \times 1}{100}$ = Rs. 11

Sum of the appreciation (C.I.) of 1^{\sharp} year and appreciation (C.I.) of 2^{nd} year

- = Rs. (10 + 11)
- = Rs. 21

Thus, when sum of appreciation is Rs.21, then value of the ring (P_1) = Rs. 100 And, when sum of appreciation is Rs. 6300, then value of the ring

$$= Rs. \frac{100 \times 6300}{21}$$

So, the value of the ring is Rs. 30000.

Answer 24.

For 1st year: P = Rs. 15500, R = 10% and T = 1 year

Interest = Rs.
$$\frac{15500 \times 10 \times 1}{100}$$
 = Rs. 1550

Amount = Rs. 15500 + Rs. 1550 = Rs. 17050

For 2^{nd} year : P = Rs. 17050; R = 15% and T = 1 year

Interest = Rs.
$$\frac{17050 \times 15 \times 1}{100}$$
 = Rs. 2557.50

Amount = Rs. 17050 + Rs. 2557.50 = Rs. 19607.50

For 3^{rd} year : P = Rs. 19607.50; R = 20% and T = 1 year

Interest = Rs.
$$\frac{19607.50 \times 20 \times 1}{100}$$
 = Rs. 3921.50

Amount = Rs. 19607.50 + Rs. 3921.50 = Rs. 23529

Difference between the C.I. of the 2nd year and the 3rd year

- = Rs. (3921.50 2557.50)
- = Rs. 1364

Answer 25.

For 1^{st} year: P = Rs. 7500, R = 30% and T = 1 year

Interest = Rs.
$$\frac{7500 \times 30 \times 1}{100}$$
 = Rs. 2250

Amount = Rs. 7500 + Rs. 2250 = Rs. 9750

For 2^{nd} year : P = Rs. 9750; R = 30% and T = 1 year

Interest = Rs.
$$\frac{9750 \times 30 \times 1}{100}$$
 = Rs. 2925

Amount = Rs. 9750 + Rs. 2925 = Rs. 12675

Thus, total amount to be paid by Samidha = Rs. 12675

But, Samidha gave Rs. 10000 + juicer to Shreya.

$$\Rightarrow$$
 Rs. 10000 + Cost of juicer = Rs. 12675

Ex 3.2

Answer 1.

(i) Rs 8000 for 3 years at 10% per annum compounded annually.

Here P = Rs 8000, t = 3 years, r = 10%

Now, Amount =
$$P\left(1 + \frac{r}{100}\right)^t = 8000\left(1 + \frac{10}{100}\right)^3$$

= $8000\left(\frac{11}{10}\right)^3$
= $8000 \times \frac{1331}{1000} = 10648$

Hence, Amount = Rs 10648

Also, CI = A - P = Rs 10648 - Rs 8000 = Rs 2648

(ii) Rs 15000 for 2 years at 8% per annum compounded semi-annually.

Here P = Rs 15000, t = 2 years, r = 8%

Since interest is compounded semi-annually, so

Amount =
$$P\left(1 + \frac{r}{200}\right)^{2t} = 15000\left(1 + \frac{8}{200}\right)^{4}$$

= $15000\left(\frac{26}{25}\right)^{4}$
= $15000 \times \frac{26}{25} \times \frac{26}{25} \times \frac{26}{25} \times \frac{26}{25} = 17547.88$

Hence, Amount = Rs 17547.88

Also, CI = A - P = Rs 17547.88 - Rs 15000 = Rs 2547.88

(iii) Rs12000 for $1\frac{1}{2}$ years at 5% per annum compounded annually.

Here P = Rs 12000,
$$t = 1\frac{1}{2}$$
 years, $r = 5\%$

Now, Amount after 1 year =
$$P\left(1 + \frac{r}{100}\right)^t = 12000\left(1 + \frac{5}{100}\right)$$

= $12000\left(\frac{105}{100}\right)$
= 12600

Now interest for the next half year =
$$=\frac{12600 \times 5}{100 \times 2} = 315$$

(iv) Rs 25000 for 2 years at 6% per annum compounded semi-annually. Here P = Rs25000, t = 2 years, r = 6% Since interest is compounded semi-annually, so

Amount =
$$P\left(1 + \frac{r}{200}\right)^{2t} = 25000\left(1 + \frac{6}{200}\right)^4$$

= $25000\left(\frac{103}{100}\right)^4$
= 28137.72

Hence, Amount = Rs 28137.72 Also, CI = A - P = Rs 28137.72 - Rs 25000 = Rs 3137.72

(v) Rs16000 for 3 years at 10%, 8% and 6% for successive years. Here P = Rs 16000, t = 3 years, r = 10%, 8%, 6% successively.

Now, Amount =
$$P\left(1 + \frac{r_1}{100}\right)\left(1 + \frac{r_2}{100}\right)\left(1 + \frac{r_3}{100}\right)$$

= $16000\left(1 + \frac{10}{100}\right)\left(1 + \frac{8}{100}\right)\left(1 + \frac{6}{100}\right)$
= $16000\left(\frac{11}{10}\right)\left(\frac{108}{100}\right)\left(\frac{106}{100}\right)$
= 20148.48

Hence, Amount = Rs 20148.48

Also, CI = A - P = Rs 20148.48 - Rs 16000 = Rs 4148.48

Answer 2.

Here P = Rs15000, t =
$$2\frac{1}{2}$$
 years, r = 10%

Now, Amount after 2 year =
$$P\left(1 + \frac{r}{100}\right)^t = 15000\left(1 + \frac{10}{100}\right)^2$$

= $15000\left(\frac{11}{10}\right)^2$
= 18150

Now interest for the next half year = $=\frac{18150 \times 10}{100 \times 2} = 907.5$ Hence, Amount = Rs 18150 + Rs 907.50 = Rs19057.50

Also, CI = A - P = Rs 19057.50 - Rs 15000 = Rs 4057.50

Answer 3.

Here P = Rs 36000, t = 2 years, r = 15%
Now, Amount =
$$P\left(1 + \frac{r}{100}\right)^t = 36000\left(1 + \frac{15}{100}\right)^2$$

= $36000\left(\frac{115}{100}\right)^2$
= 47610

Hence, Amount = Rs 47610

Answer 4.

Here P = Rs50000, t =
$$1\frac{1}{2}$$
 years, r = 8%

Since interest is compounded half-yearly, so

Now, Amount =
$$P\left(1 + \frac{r}{200}\right)^{2t} = 50000\left(1 + \frac{8}{200}\right)^{3}$$

= $50000\left(\frac{104}{100}\right)^{3}$
= 56243.20

Hence, Amount = Rs 56243.20

Also, CI = A - P = Rs 56243.20 - Rs 50000 = Rs 6243.20

Answer 5.

Here P = Rs25000, t = 2 years, r = 4%, 5% successively.

Now, Amount =
$$P\left(1 + \frac{r_1}{100}\right)\left(1 + \frac{r_2}{100}\right)$$

= $25000\left(1 + \frac{4}{100}\right)\left(1 + \frac{5}{100}\right)$
= $25000\left(\frac{104}{100}\right)\left(\frac{105}{100}\right)$
= 27300

Hence, Amount = Rs 27300

Answer 6.

Here P = Rs31250, t = 3 years, r = 8%, 10%, 12% successively.

Now, Amount =
$$P\left(1 + \frac{r_1}{100}\right)\left(1 + \frac{r_2}{100}\right)\left(1 + \frac{r_3}{100}\right)$$

= $31250\left(1 + \frac{8}{100}\right)\left(1 + \frac{10}{100}\right)\left(1 + \frac{12}{100}\right)$
= $31250\left(\frac{108}{100}\right)\left(\frac{110}{100}\right)\left(\frac{112}{100}\right)$
= 41580

Hence, Amount = Rs 41580

Answer 7.

Here P = Rs 28000, A = 30870, t = 2 years
Now, P
$$\left(1 + \frac{r}{100}\right)^t = A \Rightarrow 28000 \left(1 + \frac{r}{100}\right)^2 = 30870$$

 $A \Rightarrow 28000 \left(1 + \frac{r}{100}\right)^2 = 30870$

$$\Rightarrow \left(1 + \frac{r}{100}\right)^2 = \frac{30870}{28000} = \frac{441}{400} = \left(\frac{21}{20}\right)^2$$

$$\Rightarrow 1 + \frac{r}{100} = \frac{21}{20} \Rightarrow \frac{r}{100} = \frac{21}{20} - 1 = \frac{1}{20} \Rightarrow R = \frac{100}{20} = 5$$

Hence rate of interest is 5%.

Answer 8.

Now,
$$P\left(1 + \frac{r}{100}\right)^t = A \Rightarrow 15625\left(1 + \frac{4}{100}\right)^t = 17576$$

$$\Rightarrow \left(\frac{26}{25}\right)^{t} = \frac{17576}{15625} = \left(\frac{26}{25}\right)^{3}$$

By comparing powers, t = 3

Hence time is 3 years.

Answer 9.

Here P = Rs 2000, A = Rs 2662, r = 10%

Now,
$$P\left(1 + \frac{r}{100}\right)^t = A \Rightarrow 2000\left(1 + \frac{10}{100}\right)^t = 2662$$

$$\Rightarrow \left(\frac{11}{10}\right)^{t} = \frac{2662}{2000} = \frac{1331}{1000} = \left(\frac{11}{10}\right)^{3}$$

By comparing powers, t = 3

Hence time is 3 years.

Answer 10.

Since, Simple interest =
$$\frac{P \times r \times t}{100}$$

$$\Rightarrow 600 = \frac{P \times 4 \times 3}{100} \Rightarrow P = \frac{60000}{12} = 5000$$
Now for CL P = Ps 5000 r = 4% t = 3 year

Now for CI,
$$P = Rs 5000, r = 4\%, t = 3 year$$

Amount =P
$$\left(1 + \frac{r}{100}\right)^{t} = 5000\left(1 + \frac{4}{100}\right)^{3}$$

= $5000 \times \left(\frac{26}{25}\right)^{3} = 5624.32$

Hence, Amount = Rs 5624.32

Answer 11.

Let sum be Rs P and r % be the rate of interest. We have t = 2 years, CI = Rs 40.80 and SI = Rs 40

Since, Simple interest =
$$\frac{P \times r \times t}{100}$$

$$\Rightarrow 40 = \frac{P \times r \times 2}{100} \Rightarrow Pr = \frac{4000}{2} = 2000$$

Now,

$$CI = A-P = P\left(1 + \frac{r}{100}\right)^{t} - P = P\left[\left(1 + \frac{r}{100}\right)^{t} - 1\right]$$

$$\Rightarrow 40.80 = P \left[\left(1 + \frac{r}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 40.80 = P \left(1 + \frac{r^2}{10000} + \frac{2r}{100} - 1 \right)$$

$$\Rightarrow 40.80 = P \left(1 + \frac{r^2}{10000} + \frac{2r}{100} - 1 \right)$$

$$\Rightarrow 40.80 = P\left(\frac{r^2}{10000} + \frac{2r}{100}\right)$$

$$\Rightarrow 40.80 = \Pr\left(\frac{r}{10000} + \frac{2}{100}\right)$$

$$\Rightarrow 40.80 = 2000 \left(\frac{r + 200}{10000} \right)$$

$$\Rightarrow 40.80 = \frac{r + 200}{5}$$

$$\Rightarrow$$
 r = 40.80 x 5 - 200 = 204 - 200 = 4

Hence, r = 4%.

Now,
$$Pr = 2000 \Rightarrow P = \frac{2000}{r} = \frac{2000}{4} = 500$$
.

Thus, sum is Rs500 and rate of interest is 4%.

Answer 12.

Since, C.I. =
$$A - P$$

S.I. =
$$\frac{P \times 8 \times 2}{100} = \frac{16P}{100}$$

$$\Rightarrow \frac{1664P}{10000} - \frac{16P}{100} = Rs. 448$$

$$\Rightarrow \frac{1664P - 1600P}{10000} = Rs. 448$$

$$\Rightarrow$$
 64P = Rs. 4480000

Hence, the sum is Rs. 70000.

Answer 13.

Let the rate of interest per year be r%.

S.I. in 2 years = Rs.
$$\frac{50000 \times r \times 2}{100}$$
 = Rs. 1000r

And, C.I. in 2 years = A - P = Rs.
$$50000 \left(1 + \frac{r}{100}\right)^2$$
 - Rs. 50000

$$\Rightarrow 50000 \left(1 + \frac{r}{100}\right)^2 - 50000 - 1000r = 125$$

$$\Rightarrow 50000 \left(1 + \frac{r^2}{10000} + \frac{2r}{100} \right) - 50000 - 1000r = 125$$

$$\Rightarrow$$
 50000 + 5 r^2 + 1000 r - 50000 - 1000 r = 125

$$\Rightarrow$$
 5r² = 125

$$\Rightarrow$$
 r² = 25

$$\Rightarrow$$
 r = ±5

But the rate of interest cannot be negative.

:. Rate of interest is 5%.

Answer 14.

Given: Amount = Rs. 15729, n = 2 years,
$$r_1$$
 = 5 and r_2 = 7%

$$A = P\left(1 + \frac{r_1}{100}\right)\left(1 + \frac{r_2}{100}\right)$$

$$\Rightarrow 15729 = P\left(1 + \frac{5}{100}\right)\left(1 + \frac{7}{100}\right)$$

$$\Rightarrow 15729 = P\left(\frac{105}{100}\right)\left(\frac{107}{100}\right)$$

$$\Rightarrow P = \frac{15729 \times 100 \times 100}{105 \times 107}$$

$$\Rightarrow P = Rs. 14000$$

Answer 15.

$$13891.50 = 12000 \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow \frac{13891.50}{12000} = \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow \frac{1389150}{12000 \times 100} = \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow \frac{9261}{8000} = \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow \frac{21}{20} = 1 + \frac{r}{100}$$

$$\Rightarrow \frac{21}{20} - 1 = \frac{r}{100}$$

$$\Rightarrow \frac{1}{20} = \frac{r}{100}$$

 \Rightarrow r = 5%

Answer 16.

Let the share of A be Rs. x.

Then, the share of B = Rs. (16820 - x)

For A: P = Rs. x, r = 5% and n = (40 - 27) years = 13 years

$$\therefore A = P\left(1 + \frac{r}{100}\right)^n = Rs. \times \left(1 + \frac{5}{100}\right)^{13} = Rs. \times \left(\frac{21}{20}\right)^{13}$$

For B: P = Rs. (16820 - x), r = 5% and n = (40 - 25) years = 15 years

$$\therefore A = P\left(1 + \frac{r}{100}\right)^n = Rs. \left(16820 - x\right)\left(1 + \frac{5}{100}\right)^{15} = Rs. \left(16820 - x\right)\left(\frac{21}{20}\right)^{15}$$

Given; both receive equal sums on reaching the age of 40 years.

$$\therefore \times \left(\frac{21}{20}\right)^{13} = (16820 - \times) \left(\frac{21}{20}\right)^{15}$$

$$\Rightarrow x = (16820 - x) \times \left(\frac{21}{20}\right)^2$$

:. Share of A = Rs. 8820 and Share of B = Rs. 8000