
6.1 Introduction

In Figure 6.1, we see a bus carrying the children to
school. There is only one way to reach the school. The
driver has no choice, but to follow the road one milestone
after another to reach the school. We learnt in Chapter
5 that this is the concept of sequence, where Python
executes one statement after another from beginning to
the end of the program. These are the kind of programs
we have been writing till now.

Figure 6.1: Bus carrying students to school

Let us consider a program 6-1 that executes in
sequence, that is, statements are executed in an order
in which they are written.

The order of execution of the statements in a program
is known as flow of control. The flow of control can be
implemented using control structures. Python supports
two types of control structures—selection and repetition.

“Don't you hate code that's
not properly indented?

Making it [indenting] part of
the syntax guarantees that all

code is properly indented.”

– G. van Rossum

Chapter 6

Flow of Control

In this chapter

»» Introduction to Flow
of Control

»» Selection
»» Indentation
»» Repetition
»» Break and Continue

Statements
»» Nested Loops

Ch 6.indd 121 08-Apr-19 12:37:51 PM

2021-22

Computer Science – Class xi122

Program 6-1	 Program to print the difference of two
numbers.

#Program 6-1

#Program to print the difference of two input numbers

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

diff = num1 - num2

print("The difference of",num1,"and",num2,"is",diff)

Output:
Enter first number 5

Enter second number 7

The difference of 5 and 7 is -2

6.2 Selection

Now suppose we have `10 to buy a pen. On visiting the
stationery shop, there are a variety of pens priced at
`10 each. Here, we have to decide which pen to buy.
Similarly, when we use the direction services of a digital

map, to reach from one place to
another, we notice that sometimes
it shows more than one path like
the least crowded path, shortest
distance path, etc. We decide
the path as per our priority. A
decision involves selecting from
one of the two or more possible
options. In programming, this
concept of decision making or
selection is implemented with the
help of if..else statement.

Now, suppose we want to
display the positive difference of
the two numbers num1 and num2
given at program 6-1. For that,
we need to modify our approach.
Look at the flowchart shown in
Figure 6.2 that subtracts the
smaller number from the bigger

number so that we always get a positive difference. This
selection is based upon the values that are input for the
two numbers num1 and num2.

Figure 6.2: Flow chart depicting decision making

Ch 6.indd 122 08-Apr-19 12:37:52 PM

2021-22

Flow of Control 123

The syntax of if statement is:
if condition:
 statement(s)

In the following example, if the age entered by the
user is greater than 18, then print that the user is
eligible to vote. If the condition is true, then the indented
statement(s) are executed. The indentation implies that
its execution is dependent on the condition. There is no
limit on the number of statements that can appear as a
block under the if statement.

Example 6.1	
age = int(input("Enter your age "))

if age >= 18:

 print("Eligible to vote")
A variant of if statement called if..else statement

allows us to write two alternative paths and the control
condition determines which path gets executed. The
syntax for if..else statement is as follows.

if condition:

 statement(s)

else:

 statement(s)
Let us now modify the example on voting with the

condition that if the age entered by the user is greater
than 18, then to display that the user is eligible to vote.
Otherwise display that the user is not eligible to vote.

age = int(input("Enter your age: "))
if age >= 18:
 print("Eligible to vote")
else:
 print("Not eligible to vote")

Now let us use the same concept to modify program
6-1, so that it always gives a positive difference as the
output. From the flow chart in Figure 6.2, it is clear that
we need to decide whether num1 > num2 or not and
take action accordingly.

We have to specify two blocks of statements since
num1 can be greater than num2 or vice-versa as shown
in program 6-2.

Many a times there are situations that require
multiple conditions to be checked and it may lead to
many alternatives. In such cases we can chain the
conditions using if..elif (elif means else..if).

Notes

Ch 6.indd 123 08-Apr-19 12:37:52 PM

2021-22

Computer Science – Class xi124

Program 6-2	 Program to print the positive difference
of two numbers.

#Program 6-2
#Program to print the positive difference of two numbers
num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
if num1 > num2:
 diff = num1 - num2
else:
 diff = num2 - num1
print("The difference of",num1,"and",num2,"is",diff)

Output:

Enter first number: 5

Enter second number: 6

The difference of 5 and 6 is 1

The syntax for a selection structure using elif is as
shown below.

if condition:

 statement(s)

elif condition:

 statement(s)

elif condition:

 statement(s)

else:

 statement(s)

Example 6.2	 Check whether a number is positive,
negative, or zero.

number = int(input("Enter a number: ")
if number > 0:
 print("Number is positive")
elif number < 0:
 print("Number is negative")
else:

 print("Number is zero")

Example 6.3	 Display the appropriate message as per
the colour of signal at the road crossing.

signal = input("Enter the colour: ")

if signal == "red" or signal == "RED":

 print("STOP")

elif signal == "orange" or signal ==
"ORANGE":

Ch 6.indd 124 08-Apr-19 12:37:52 PM

2021-22

Flow of Control 125

 print("Be Slow")

elif signal == "green" or signal == "GREEN":

 print("Go!")

Number of elif is dependent on the number of
conditions to be checked. If the first condition is false,
then the next condition is checked, and so on. If one of
the conditions is true, then the corresponding indented
block executes, and the if statement terminates.

Let us write a program to create a simple calculator
to perform basic arithmetic operations on two numbers.
The program should do the following:

•	 Accept two numbers from the user.
•	 Ask user to input any of the operator (+, -, *, /).

An error message is displayed if the user enters
anything else.

•	 Display only positive difference in case of the
operator "-".

•	 Display a message “Please enter a value other
than 0” if the user enters the second number as
0 and operator ‘/’ is entered.

Program 6-3	 Write a program to create a simple
calculator performing only four basic
operations.

#Program to create a four function calculator
result = 0
val1 = float(input("Enter value 1: "))
val2 = float(input("Enter value 2: "))
op = input("Enter any one of the operator (+,-,*,/): ")
if op == "+":
 result = val1 + val2
elif op == "-":
 if val1 > val2:
 result = val1 - val2
 else:
 result = val2 - val1
elif op == "*":
 result = val1 * val2
elif op == "/":
 if val2 == 0:
 print("Error! Division by zero is not allowed. Program
terminated")
 else:
 result = val1/val2
else:
 print("Wrong input,program terminated")
print("The result is ",result)

Ch 6.indd 125 08-Apr-19 12:37:52 PM

2021-22

Computer Science – Class xi126

 Output:
Enter value 1: 84
Enter value 2: 4
Enter any one of the operator (+,-,*,/): /
The result is 21.0

In the program, for the operators "-" and "/", there
exists an if..else condition within the elif block.
This is called nested if. We can have many levels of
nesting inside if..else statements.

6.3 Indentation

In most programming languages, the statements within
a block are put inside curly brackets. However, Python
uses indentation for block as well as for nested block
structures. Leading whitespace (spaces and tabs) at
the beginning of a statement is called indentation.
In Python, the same level of indentation associates
statements into a single block of code. The interpreter
checks indentation levels very strictly and throws up
syntax errors if indentation is not correct. It is a common
practice to use a single tab for each level of indentation.

In the program 6-4, the if-else statement has two
blocks of statements and the statements in each block
are indented with the same amount of spaces or tabs.

Program 6-4	 Program to find the larger of the two
pre-specified numbers.

#Program 6-4

#Program to find larger of the two numbers

num1 = 5

num2 = 6

if num1 > num2:				 #Block1

 	 print("first number is larger")

		 print("Bye")

else: 						 #Block2

		 print("second number is larger")

		 print("Bye Bye")

 Output:
second number is larger
Bye Bye

Ch 6.indd 126 08-Apr-19 12:37:52 PM

2021-22

Flow of Control 127

6.4 Repetition
Often, we repeat a tasks, for example, payment of
electricity bill, which is done every month. Figure 6.3
shows the life cycle of butterfly that involves four
stages, i.e., a butterfly lays eggs, turns into a
caterpillar, becomes a pupa, and finally matures
as a butterfly. The cycle starts again with laying
of eggs by the butterfly.

This kind of repetition is also called iteration.
Repetition of a set of statements in a program
is made possible using looping constructs.
To understand further, let us look at the
program 6-5. Figure 6.3: Iterative process

occurring in nature

Program 6-5	 Write a program to print the first
five natural numbers. 	

#Program 6-5

#Print first five natural numbers

print(1)

print(2)

print(3)

print(4)

print(5)

Output:
1

2

3

4

5

What should we do if we are asked to print the
first 100,000 natural numbers? Writing 100,000 print
statements would not be an efficient solution. It would
be tedious and not the best way to do the task. Writing a
program having a loop or repetition is a better solution.
The program logic is given below:

1.	 Take a variable, say count, and set its value to 1.
2.	 Print the value of count.
3.	 Increment the variable (count += 1).

Ch 6.indd 127 08-Apr-19 12:37:52 PM

2021-22

Computer Science – Class xi128

4.	 Repeat steps 2 and 3 as long as count has a value
less than or equal to 100,000 (count <= 100,000).

Looping constructs provide the facility to execute a
set of statements in a program repetitively, based on a
condition. The statements in a loop are executed again
and again as long as particular logical condition remains
true. This condition is checked based on the value of
a variable called the loop’s control variable. When the
condition becomes false, the loop terminates. It is the
responsibility of the programmer to ensure that this
condition eventually does become false so that there is
an exit condition and it does not become an infinite loop.
For example, if we did not set the condition count <=
100000, the program would have never stopped. There
are two looping constructs in Python - for and while.

6.4.1 The ‘For’ Loop
The for statement is used to iterate over a range of
values or a sequence. The for loop is executed for each
of the items in the range. These values can be either

numeric, or, as we shall see in later
chapters, they can be elements of a data
type like a string, list, or tuple.

With every iteration of the loop, the
control variable checks whether each
of the values in the range have been
traversed or not. When all the items in
the range are exhausted, the statements
within loop are not executed; the control
is then transferred to the statement
immediately following the for loop. While
using for loop, it is known in advance
the number of times the loop will execute.
The flowchart depicting the execution of
a for loop is given in Figure 6.4.

(A)	 Syntax of the For Loop
for <control-variable> in <sequence/
items in range>:

	 <statements inside body of the 		
	 loop>

Figure 6.4: Flow chart of for loop

Ch 6.indd 128 08-Apr-19 12:37:52 PM

2021-22

Flow of Control 129

Program 6-6	 Program to print the characters in the
string ‘PYTHON’ using for loop.

#Program 6-6

#Print the characters in word PYTHON using for loop

for letter in 'PYTHON':

 print(letter)

Output:
P

Y

T

H

O

N
Program 6-7	 Program to print the numbers in a given 	

sequence using for loop.

#Program 6-7

#Print the given sequence of numbers using for loop

count = [10,20,30,40,50]

for num in count:

 print(num)

Output:
10

20

30

40

50
Program 6-8	 Program to print even numbers in a given

sequence using for loop.
#Program 6-8

#Print even numbers in the given sequence

numbers = [1,2,3,4,5,6,7,8,9,10]

for num in numbers:

 if (num % 2) == 0:

 print(num,'is an even Number')

Output:
2 is an even Number

4 is an even Number

Ch 6.indd 129 08-Apr-19 12:37:52 PM

2021-22

Computer Science – Class xi130

6 is an even Number

8 is an even Number

10 is an even Number
Note: Body of the loop is indented with respect to the for statement.

(B)	 The Range() Function
The range() is a built-in function in Python. Syntax of
range() function is:
		 range([start], stop[, step])

It is used to create a list containing a sequence of
integers from the given start value upto stop value
(excluding stop value), with a difference of the given
step value. We will learn about functions in the next
chapter. To begin with, simply remember that function
takes parameters to work on. In function range(), start,
stop and step are parameters.

The start and step parameters are optional. If start
value is not specified, by default the list starts from 0. If
step is also not specified, by default the value increases
by 1 in each iteration. All parameters of range() function
must be integers. The step parameter can be a positive
or a negative integer excluding zero.
Example 6.4	

#start and step not specified

>>> list(range(10)-)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

#default step value is 1

>>> list(range(2, 10))

[2, 3, 4, 5, 6, 7, 8, 9]

#step value is 5

>>> list(range(0, 30, 5)) 	

[0, 5, 10, 15, 20, 25] 	

#step value is -1. Hence, decreasing 	
#sequence is generated

>>> range(0, -9, -1) 	

[0, -1, -2, -3, -4, -5, -6, -7, -8]

The function range() is often used in for loops for
generating a sequence of numbers.

Ch 6.indd 130 08-Apr-19 12:37:52 PM

2021-22

Flow of Control 131

Program 6-9	 Program to print the multiples of 10 for 	
numbers in a given range.

#Program 6-9

#Print multiples of 10 for numbers in a given range

for num in range(5):

 if num > 0:

 print(num * 10)

Output:
10

20

30

40

6.4.2 The ‘While’ Loop
The while statement executes a block of code repeatedly
as long as the control condition of the loop is true. The
control condition of the while
loop is executed before any
statement inside the loop is
executed. After each iteration,
the control condition is tested
again and the loop continues as
long as the condition remains
true. When this condition becomes
false, the statements in the body
of loop are not executed and the
control is transferred to the
statement immediately following
the body of while loop. If the
condition of the while loop is
initially false, the body is not
executed even once.

The statements within the
body of the while loop must
ensure that the condition
eventually becomes false; otherwise the loop will become
an infinite loop, leading to a logical error in the program.
The flowchart of while loop is shown in Figure 6.5.
Syntax of while Loop

while test_condition:

	 body of while

Figure 6.5: Flow chart of while Loop

Initialisation
Statement

Statements following
the while loop

Ch 6.indd 131 08-Apr-19 12:37:53 PM

2021-22

Computer Science – Class xi132

Program 6-10	 Program to print first 5 natural numbers
 using while loop.

#Program 6-10

#Print first 5 natural numbers using while loop

count = 1

while count <= 5:

 print(count)

 count += 1

Output:
1

2

3

4

5

Program 6-11	 Program to find the factors of a whole
 number using while loop.

#Program 6-11

#Find the factors of a number using while loop

num = int(input("Enter a number to find its factor: "))

print (1, end=' ') #1 is a factor of every number

factor = 2

while factor <= num/2 :

 if num % factor == 0:

#the optional parameter end of print function specifies the delimeter

#blank space(' ') to print next value on same line
 print(factor, end=' ')

 factor += 1

print (num, end=' ') #every number is a factor of itself

Output:
Enter a number to find its factors : 6

1 2 3 6

Note: Body of the loop is indented with respect to the while
statement. Similarly, the statements within if are indented
with respect to positioning of if statement.

6.5 Break and Continue Statement

Looping constructs allow programmers to repeat tasks
efficiently. In certain situations, when some particular
condition occurs, we may want to exit from a loop (come

Ch 6.indd 132 08-Apr-19 12:37:53 PM

2021-22

Flow of Control 133

out of the loop forever) or skip
some statements of the loop
before continuing further in
the loop. These requirements
can be achieved by using break
and continue statements,
respectively. Python provides
these statements as a tool
to give more flexibility to the
programmer to control the
flow of execution of a program.

6.5.1 Break Statement
The break statement alters
the normal flow of execution
as it terminates the current
loop and resumes execution of the statement following
that loop.

Figure 6.5: Flowchart for using break statement in loop

Program 6-12	 Program to demonstrate use of break
statement.

#Program 6-12

#Program to demonstrate the use of break statement in loop

num = 0

for num in range(10):

 num = num + 1

 if num == 8:

 break

 print('Num has value ' + str(num))

print('Encountered break!! Out of loop')

Output:
Num has value 1

Num has value 2

Num has value 3

Num has value 4

Num has value 5

Num has value 6

Num has value 7

Encountered break!! Out of loop

Note: When value of num becomes 8, the break statement is
executed and the for loop terminates.

Ch 6.indd 133 08-Apr-19 12:37:53 PM

2021-22

Computer Science – Class xi134

Program 6-13	Find the sum of all the positive numbers
entered by the user. As soon as the user
enters a neagtive number, stop taking
in any further input from the user and
display the sum .

#Program 6-13
#Find the sum of all the positive numbers entered by the user
#till the user enters a negative number.
entry = 0
sum1 = 0
print("Enter numbers to find their sum, negative number ends the
loop:")
while True:
#int() typecasts string to integer
 entry = int(input())
 if (entry < 0):
 break
 sum1 += entry
print("Sum =", sum1)

Output:
Enter numbers to find their sum, negative number ends the loop:
3
4
5
-1

Sum = 12

Program 6-14	 Program to check if the input number is
 prime or not.

#Program 6-14
#Write a Python program to check if a given number is prime or not.
num = int(input("Enter the number to be checked: "))
flag = 0 			 #presume num is a prime number
if num > 1 :
 for i in range(2, int(num / 2)):
 if (num % i == 0):
 flag = 1 #num is a not prime number
 break #no need to check any further

 if flag == 1:
 print(num , "is not a prime number")
 else:

 print(num , "is a prime number")

Ch 6.indd 134 08-Apr-19 12:37:53 PM

2021-22

Flow of Control 135

else :

 print("Entered number is <= 1, execute again!")

Output 1:
Enter the number to be checked: 20
20 is not a prime number

Output 2:
Enter the number to check: 19
19 is a prime number

Output 3:
Enter the number to check: 2
2 is a prime number

Output 4:		
Enter the number to check: 1

Entered number is <= 1, execute again!

6.5.2 Continue Statement
When a continue statement
is encountered, the control
skips the execution of
remaining statements inside
the body of the loop for the
current iteration and jumps
to the beginning of the loop
for the next iteration. If the
loop’s condition is still true,
the loop is entered again,
else the control is transferred
to the statement immediately
following the loop.Figure 6.7
shows the flowchart of continue
statement. Figure 6.6: Flow chart of continue statement

Program 6-15	 Program to demonstrate the use of
 continue statement.

#Program 6-15

#Prints values from 0 to 6 except 3

num = 0

for num in range(6):

 num = num + 1

 if num == 3:

Ch 6.indd 135 08-Apr-19 12:37:53 PM

2021-22

Computer Science – Class xi136

 continue

 print('Num has value ' + str(num))

print('End of loop')

Output:
Num has value 1

Num has value 2

Num has value 4

Num has value 5

Num has value 6

End of loop

Observe that the value 3 is not printed in the output,
but the loop continues after the continue statement to
print other values till the for loop terminates.

6.6 Nested Loops

A loop may contain another loop inside it. A loop inside
another loop is called a nested loop.

Program 6-16	 Program to demonstrate working of
 nested for loops.

#Program 6-16

#Demonstrate working of nested for loops

for var1 in range(3):

 print("Iteration " + str(var1 + 1) + " of outer loop")

 for var2 in range(2): #nested loop

 print(var2 + 1)

 print("Out of inner loop")

print("Out of outer loop")

Output:
Iteration 1 of outer loop
1
2
Out of inner loop
Iteration 2 of outer loop
1
2
Out of inner loop
Iteration 3 of outer loop
1
2
Out of inner loop
Out of outer loop

Ch 6.indd 136 08-Apr-19 12:37:53 PM

2021-22

Flow of Control 137

Python does not impose any restriction on how
many loops can be nested inside a loop or on the levels
of nesting. Any type of loop (for/while) may be nested
within another loop (for/while).

Program 6-17	 Program to print the pattern for a number
 input by the user.

#Program 6-17

#Program to print the pattern for a number input by the user

#The output pattern to be generated is

#1

#1 2

#1 2 3

#1 2 3 4

#1 2 3 4 5

num = int(input("Enter a number to generate its pattern = "))

for i in range(1,num + 1):

 for j in range(1,i + 1):

 print(j, end = " ")

 print()

Output:
Enter a number to generate its pattern = 5

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Program 6-18	 Program to find prime numbers between
2 to 50 using nested for loops.

#Program 6-18
#Use of nested loops to find the prime numbers between 2 to 50

num = 2
for i in range(2, 50):
 j= 2
 while (j <= (i/2)):
 if (i % j == 0): #factor found
 break #break out of while loop
 j += 1
 if (j > i/j) : #no factor found

Ch 6.indd 137 21-May-19 12:17:09 PM

2021-22

Computer Science – Class xi138

 print (i, "is a prime number")

print ("Bye Bye!!")

Output:
2 is a prime number

3 is a prime number

5 is a prime number

7 is a prime number

11 is a prime number

13 is a prime number

17 is a prime number

19 is a prime number

23 is a prime number

29 is a prime number

31 is a prime number

37 is a prime number

41 is a prime number

43 is a prime number

47 is a prime number

Bye Bye!!

Program 6-19	 Write a program to calculate the factorial
of a given number.

#Program 6-19

#The following program uses a for loop nested inside an if..else
#block to calculate the factorial of a given number

num = int(input("Enter a number: "))

fact = 1

check if the number is negative, positive or zero

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num == 0:

 print("The factorial of 0 is 1")

else:

 for i in range(1, num + 1):	

 fact = fact * i

 print("factorial of ", num, " is ", fact)

Output:
Enter a number: 5

Factorial of 5 is 120

Ch 6.indd 138 08-Apr-19 12:37:53 PM

2021-22

Flow of Control 139

Exercise

1.	 What is the difference between else and elif
construct of if statement?

2.	 What is the purpose of range() function? Give one
example.

3.	 Differentiate between break and continue
statements using examples.

4.	 What is an infinite loop? Give one example.
5.	 Find the output of the following program segments:

(i) a = 110
while a > 100:
 print(a)
 a -= 2

Summary

•	 The if statement is used for selection or decision
making.

•	 The looping constructs while and for allow
sections of code to be executed repeatedly under
some condition.

•	 for statement iterates over a range of values or
a sequence.

•	 The statements within the body of for loop are
executed till the range of values is exhausted.

•	 The statements within the body of a while are
executed over and over until the condition of the
while is false.

•	 If the condition of the while loop is initially false, the
body is not executed even once.

•	 The statements within the body of the while loop
must ensure that the condition eventually becomes
false; otherwise, the loop will become an infinite loop,
leading to a logical error in the program.

•	 The break statement immediately exits a loop,
skipping the rest of the loop’s body. Execution continues
with the statement immediately following the body of
the loop. When a continue statement is encountered,
the control jumps to the beginning of the loop for the
next iteration.

•	 A loop contained within another loop is called a
nested loop.

Notes

Ch 6.indd 139 08-Apr-19 12:37:53 PM

2021-22

Computer Science – Class xi140

(ii) for i in range(20,30,2):
 print(i)

(iii) country = 'INDIA'
for i in country:
 print (i)

(iv) i = 0; sum = 0
while i < 9:
 if i % 4 == 0:
 sum = sum + i
 i = i + 2
print (sum)

(v) for x in range(1,4):
 for y in range(2,5):
 if x * y > 10:
 break
 print (x * y)

(vi) var = 7
while var > 0:
 print ('Current variable value: ', var)
 var = var -1
 if var == 3:
 break
 else:
 if var == 6:
 var = var -1
 continue
 print ("Good bye!")

Programming Exercises
1.	 Write a program that takes the name and age of the

user as input and displays a message whether the
user is eligible to apply for a driving license or not.
(the eligible age is 18 years).

2.	 Write a function to print the table of a given number.
The number has to be entered by the user.

3.	 Write a program that prints minimum and maximum
of five numbers entered by the user.

4.	 Write a program to check if the year entered by the
user is a leap year or not.

5.	 Write a program to generate the sequence: –5, 10,
–15, 20, –25….. upto n, where n is an integer input
by the user.

6.	 Write a program to find the sum of 1+ 1/8 +
1/27......1/n3, where n is the number input by the
user.

Notes

Ch 6.indd 140 08-Apr-19 12:37:53 PM

2021-22

Flow of Control 141

7.	 Write a program to find the sum of digits of an
integer number, input by the user.

8.	 Write a function that checks whether an input
number is a palindrome or not.

[Note: A number or a string is called palindrome if it
appears same when written in reverse order also. For
example, 12321 is a palindrome while 123421 is not a
palindrome]

9.	 Write a program to print the following patterns:

i) *

 * * *

 * * * * *

 * * *

 *

ii) 1

 2 1 2

 3 2 1 2 3

 4 3 2 1 2 3 4

 5 4 3 2 1 2 3 4 5

iii) 1 2 3 4 5

 1 2 3 4

 1 2 3

 1 2

 1

 iv) *

 * *

 * *

 * *

 *

10.	 Write a program to find the grade of a student when
 grades are allocated as given in the table below.

Percentage of Marks Grade

Above 90% A
80% to 90% B

70% to 80% C
60% to 70% D

Below 60% E

 Percentage of the marks obtained by the student is input
to the program.

Case Study-based Questions
Let us add more functionality to our SMIS developed in
Chapter 5.
6.1 Write a menu driven program that has options to

•	 accept the marks of the student in five major
subjects in Class X and display the same.

•	 calculate the sum of the marks of all subjects.
Divide the total marks by number of subjects
(i.e. 5), calculate percentage = total marks/5
and display the percentage.

Notes

Ch 6.indd 141 08-Apr-19 12:37:53 PM

2021-22

Computer Science – Class xi142

•	 Find the grade of the student as per the
following criteria:

Criteria Grade

percentage > 85 A

percentage < 85 && percentage >= 75 B

percentage < 75 && percentage >= 50 C

percentage > 30 && percentage <= 50 D

percentage <30 Reappear

Let’s peer review the case studies of others based on
the parameters given under “DOCUMENTATION TIPS”
at the end of Chapter 5 and provide a feedback to them.

Notes

Ch 6.indd 142 08-Apr-19 12:37:53 PM

2021-22

