Chapter 17. Pythagoras Theorem

Ex 17.1

Answer 1.

```
Base = 5cm, Hypotenuse = 13cm

By Pythagoras theorem,

(perpendicular)^2 = (13cm)^2 - (5cm)^2

(perpendicular)^2 = 169cm^2 - 25cm^2

(perpendicular)^2 = 144cm^2

(perpendicular)^2 = (12cm)^2

\therefore perpendicular = 12cm

Area of the triangle = 13cm^2 \times (Base \times Perpendicular)

= \frac{1}{2} \times 5cm \times 12cm

= 30cm^2
```

Answer 2.

The two sides (excluding hypotenuse) of a right - angled triangle are given as 24cm and 7cm

 $(hypotenuse)^2 = (24cm)^2 + (7cm)^2$ $(hypotenuse)^2 = 576cm^2 + 49cm^2$ $(hypotenuse)^2 = 625cm^2$ $(hypotenuse)^2 = (25cm)^2$

Thus, the length of the hypotenuse of the triangle is 25cm.

Answer 3.

Hypotenuse = 65cm

One side = 16cm

Let the other side be of length x cm

By Pythagoras theorem,

$$(65cm)^2 = (16cm)^2 + (x cm)^2$$

$$(x cm)^2 = 4225cm^2 - 256cm^2$$

$$= 3969 cm^2$$

$$= (63cm)^2$$

$$\Rightarrow x = 63cm$$

Area of the triangle =
$$\frac{1}{2}$$
 × (Base × Height)
= $\frac{1}{2}$ × 16cm × 63cm

$$= 504 \, \text{cm}^2$$

Answer 4.

Let O be the original position of the man.

From the figure, it is clear that B is the final position of the man.

 ΔAOB is right – angled at A.

By Pythagoras theorem,

$$OB^2 = OA^2 + AB^2$$

$$OB^2 = (10m)^2 + (24m)^2$$

$$OB^2 = 100m^2 + 576m^2$$

$$OB^2 = 676m^2$$

$$OB^2 = (26m)^2$$

$$OB = 26m$$

Thus, the man is at a distance of 26m from the starting point.

Answer 5.

Let AC be the ladder and A be the position of the window.

Then, AC = 25m, AB = 20m

Using Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow$$
 (25m)² = (20m)² + BC²

$$\Rightarrow$$
 BC² = 625m² - 400m²

$$BC^2 = 225m^2$$

$$BC^2 = (15m)^2$$

Thus, the distance of the foot of the ladder from the building is 15m.

Answer 6.

Hypotenuse = p cm

One side = q cm

Let the length of the third side be x cm.

Using Pythagoras theorem,

$$x^2 = p^2 - q^2 = (p + q)(p - q)$$

$$= (p + q) \times 1$$
 [: $p - q = 1$, given]

$$=p+q$$

$$\therefore \times = \sqrt{p+q}$$

Thus, the length of the third side of the triangle is $\sqrt{p+q}$ cm.

Answer 7.

let O be the foot of the ladder. Let AO be the position of the ladder when it touches the window at A which is 9m high and CO be the position of the ladder when it touches the window at C which is 12m high. Using Pythagoras theorem,

In ∆AOB,

$$BO^2 = AO^2 - AB^2$$

$$BO^2 = (15m)^2 - (9m)^2$$

$$BO^2 = 225m^2 - 81m^2$$

$$BO^2 = 144m^2$$

$$BO^2 = (12m)^2$$

$$BO = 12m$$

Using Pythagoras theorem in ACOB,

$$DO^2 = CO^2 - CD^2$$

$$DO^2 = (15m)^2 - (12m)^2$$

$$DO^2 = 225m^2 - 144m^2$$

$$DO^2 = 81m^2$$

$$DO = 9m$$

Width of the street = DO +BO = 9m + 12m = 21m

Answer 8.

Let AC be the ladder and A be the position of the window which is 8m above the ground.

Now, the ladder is shifted such that its foot is at point D which is 8m away from the wall.

At this instance, the position of the ladder is DE.

Using Pythagoras theorem in ΔABC ,

$$AC^2 = AB^2 + BC^2$$

$$= (8m)^2 + (6m)^2$$

$$= 64m^2 + 36m^2$$

$$= 100m^2$$

$$= (10m)^2$$

Using Pythagoras theorem in ADBE,

Thus, the required height up to which the ladder reaches is 6m above the ground.

Answer 9.

Let AB and CD be the two poles of height 14m and 9m respectively.

It is given that BD = 12m

Now,
$$AE = AB - BE$$

= $14m - 9m = 5m$

Using Pythagoras theorem in AACE,

$$AC^{2} = AE^{2} + CE^{2}$$

$$= (5m)^{2} + (12m)^{2}$$

$$= 25m^{2} = 144m^{2}$$

$$= 169m^{2}$$

$$= 13m^{2}$$

$$\Rightarrow AC = 13m$$

Thus, the distance between the tops of the poles is 13m

Answer 10.

It is given that the diagonals of a rhombus are of length 14cm and 10cm respectively

The diagonals of a rhombus bisect each other

Thus, each side of the rhombus is of length 13cm

Answer 11.

Side of the rhombus = 10cm

One diagonal, d₁ = 16cm

Let d₂ be the other diagonal of the rhombus

The diagonals of a rhombus bisect each other

$$8^2 + \left(\frac{d_2}{2}\right)^2 = 100$$

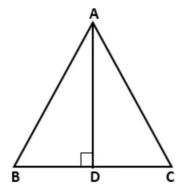
$$\Rightarrow \left(\frac{d_2}{2}\right)^2 = 100 - 64 = (6)^2$$

$$\Rightarrow \frac{d_2}{2} = 6$$

$$\Rightarrow$$
 d₂ = 12

Thus, the other diagonal of the rhombus is of length 12cm

Answer 12.



Since triangles ABD and ACD are right triangles right-angled at D,

$$AB^2 = AD^2 + BD^2 \qquad \dots (i)$$

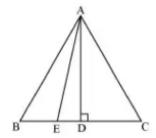
$$AC^2 = AD^2 + CD^2 \qquad \dots (ii)$$

Subtracting (ii) from (i), we get

$$AB^2 - AC^2 = BD^2 - CD^2$$

$$\Rightarrow$$
 AB² + CD² = AC² + BD²

Answer 13.



Let side of equilateral triangle be a. And AE be the altitude of AABC

So, BE = EC =
$$\frac{BC}{2} = \frac{a}{2}$$

And, AE =
$$\frac{a\sqrt{3}}{2}$$

Given that BD =
$$\frac{1}{3}$$
 BC = $\frac{a}{3}$

So, DE = BD-BE =
$$\frac{a}{2} - \frac{a}{3} = \frac{a}{6}$$

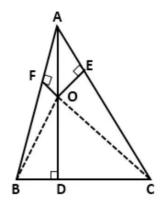
Now, in AADE by applying Pythagoras theorem

$$AD^2 = AE^2 + DE^2$$

$$AD^{2} = \left(\frac{a\sqrt{3}}{2}\right)^{2} + \left(\frac{a}{6}\right)^{2}$$
$$= \left(\frac{3a^{2}}{4}\right) + \left(\frac{a^{2}}{36}\right) = \frac{28a^{2}}{36}$$

Or,
$$9 \text{ AD}^2 = 7 \text{ AB}^2$$
.

Answer 14.



a. In right triangles OFA, ODB and OEC, we have

$$OA^{2} = AF^{2} + OF^{2}$$
 $OB^{2} = BD^{2} + OD^{2}$
 $OC^{2} = CE^{2} + OE^{2}$
Adding all these results, we get
 $OA^{2} + OB^{2} + OC^{2} = AF^{2} + BD^{2} + CE^{2} + OF^{2} + OD^{2} + OE^{2}$
 $\Rightarrow AF^{2} + BD^{2} + CE^{2} = OA^{2} + OB^{2} + OC^{2} - OD^{2} - OE^{2} - OF^{2}$

b. In right triangles ODB and ODC, we have

$$OB^{2} = OD^{2} + BD^{2}$$

$$OC^{2} = OD^{2} + CD^{2}$$

$$OB^{2} - OC^{2} = (OD^{2} + BD^{2}) - (OD^{2} + CD^{2})$$

$$OB^{2} - OC^{2} = BD^{2} - CD^{2} \qquad(i)$$

$$Similarly, we have$$

$$OC^{2} - OA^{2} = CE^{2} - AE^{2} \qquad(ii)$$

$$OA^{2} - OB^{2} = AF^{2} - BF^{2} \qquad(iii)$$

$$Adding (i), (ii) and (iii), we get$$

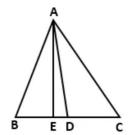
$$(OB^{2} - OC^{2}) + (OC^{2} - OA^{2}) + (OA^{2} - OB^{2}) = (BD^{2} - CD^{2}) + (CE^{2} - AE^{2}) + (AF^{2} - BF^{2})$$

$$OBD^{2} + CE^{2} + AF^{2}) - (AE^{2} + CD^{2} + BF^{2}) = 0$$

$$OBD^{2} + CE^{2} + AF^{2}) - (AE^{2} + CD^{2} + BF^{2}) = 0$$

$$OBD^{2} + CE^{2} + AF^{2}) - (AE^{2} + CD^{2} + BF^{2}) = 0$$

Answer 15.



We have ∠AED = 90°, ∴ ∠ADE < 90° and ∠ADC > 90° i.e. ∠ADE is acute and ∠ADC is obtuse.

a. In \triangle ADC, \angle ADC is an obtuse angle.

$$AC^{2} = AD^{2} + DC^{2} + 2 \times DC \times DE$$

$$\Rightarrow AC^{2} = AD^{2} + \left(\frac{1}{2}BC\right)^{2} + 2 \times \frac{1}{2}BC \times DE$$

$$\Rightarrow AC^{2} = AD^{2} + \frac{1}{4}BC^{2} + BC \times DE$$

$$\Rightarrow AC^{2} = AD^{2} + BC \times DE + \frac{1}{4}BC^{2} \qquad(i)$$

b. In ΔABD, ∠ADE is an acute angle.

$$AB^{2} = AD^{2} + BD^{2} - 2 \times BD \times DE$$

$$\Rightarrow AB^{2} = AD^{2} + \left(\frac{1}{2}BC\right)^{2} - 2 \times \frac{1}{2}BC \times DE$$

$$\Rightarrow AB^{2} = AD^{2} + \frac{1}{4}BC^{2} - BC \times DE$$

$$\Rightarrow AB^{2} = AD^{2} - BC \times DE + \frac{1}{4}BC^{2} \qquad(ii)$$

c. Adding (i) and (ii), we have

$$AC^{2} + AB^{2} = AD^{2} + BC \times DE + \frac{1}{4}BC^{2} + AD^{2} - BC \times DE + \frac{1}{4}BC^{2}$$
$$\Rightarrow AB^{2} + AC^{2} = 2AD^{2} + \frac{1}{2}BC^{2} \qquad(iii)$$

d. Subtracting (ii) from (i), we have

$$AC^2 - AB^2 = AD^2 + BC \times DE + \frac{1}{4}BC^2 - AD^2 + BC \times DE - \frac{1}{4}BC^2$$

 $\Rightarrow AC^2 - AB^2 = 2BC \times DE$

e. From (iii), we have

$$AB^{2} + AC^{2} = 2AD^{2} + \frac{1}{2}BC^{2}$$

$$\Rightarrow AB^{2} + AC^{2} = 2AD^{2} + \frac{1}{2}(2 \times CD)^{2}$$

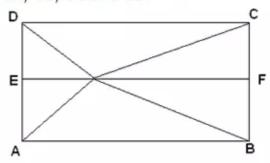
$$\Rightarrow AB^{2} + AC^{2} = 2AD^{2} + \frac{1}{2} \times 4CD^{2}$$

$$\Rightarrow AB^{2} + AC^{2} = 2AD^{2} + 2CD^{2}$$

$$\Rightarrow AB^{2} + AC^{2} = 2(AD^{2} + CD^{2})$$

Answer 16.

Let ABCD be the given rectangle and let O be a point within it. Join OA, OB, OC and OD.



Through O, draw EOF | AB. Then, ABFE is a rectangle.

In right triangles \triangle OEA and \triangle OFC, we have

$$\Rightarrow$$
 OA²+ OC²= (OE²+AE²)+(OF²+CF²)

$$\Rightarrow$$
 OA²+ OC²=OE²+OF²+AE²+CF²(i)

Now, in right triangles Δ OFB and Δ ODE, we have

$$\Rightarrow$$
 OB²+OD²=(OF²+FB²)+(OE²+DE²)

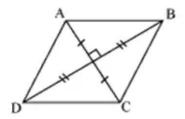
$$\Rightarrow$$
 OB²+OD²=OE²+OF²+DE²+BF²

$$\Rightarrow$$
 OB²+OD²=OE²+OF²+ CF² +AE² [:DE=CF and AE=BF]....(ii)

From (i) and (ii), we get

$$OA^2 + OC^2 = OB^2 + OD^2$$

Answer 17.



In ΔAOB, ΔBOC, ΔCOD, ΔAOD

Applying Pythagoras theorem

$$AB^2 = AO^2 + OB^2$$

$$BC^2 = BO^2 + OC^2$$

$$CD^2 = CO^2 + OD^2$$

$$AD^2 = AO^2 + OD^2$$

Adding all these equations,

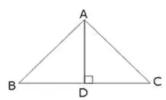
$$AB^2 + BC^2 + CD^2 + AD^2 = 2(AO^2 + OB^2 + OC^2 + OD^2)$$

$$=2\left[\left(\frac{AC}{2}\right)^2+\left(\frac{BD}{2}\right)^2+\left(\frac{AC}{2}\right)^2+\left(\frac{BD}{2}\right)^2\right] \qquad \qquad \text{(diagonals bisect each other.)}$$

$$=2\left(\frac{\left(AC\right)^2}{2}+\frac{\left(BD\right)^2}{2}\right)$$

$$= (AC)^2 + (BD)^2$$

Answer 18.



In equilateral triangle AD ±BC.

$$\Rightarrow$$
BD=DC= $\frac{BC}{2}$ (In equilateral triangle altitude bisects the opposite side)

In right triangle ABD,

$$AB^2=AD^2+BD^2$$

$$=AD^{2}+(\frac{BC}{2})^{2}$$

$$=\frac{4AD^{2}+BC^{2}}{4}$$

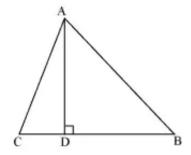
$$=\frac{4AD^{2}+AB^{2}}{4} \quad (Since AB=BC)$$

$$\Rightarrow$$
4AB²=4AD²+AB²

$$\Rightarrow$$
3AB²=4AD²

Hence proved.

Answer 19.



In ∆ACD

$$AC^{2} = AD^{2}+DC^{2}$$

$$AD^{2} = AC^{2}-DC^{2}$$
(1)

In AABD

$$AB^2 = AD^2 + DB^2$$

$$AD^2 = AB^2 - DB^2 \tag{2}$$

From equation (1)and(2)

Therefore $AC^2 - DC^2 = AB^2 - DB^2$

since given that 3DC = DB

$$DC = \frac{BC}{4} \text{ and } DB = \frac{3BC}{4}$$

$$AC^2 - \left(\frac{BC}{4}\right)^2 = AB^2 - \left(\frac{3BC}{4}\right)^2$$

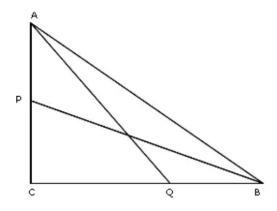
$$AC^2 - \frac{BC^2}{16} = AB^2 - \frac{9BC^2}{16}$$

$$16AC^2 - BC^2 = 16AB^2 - 9BC^2$$

$$\Rightarrow 16AB^2 - 16AC^2 = 8BC^2$$

$$\Rightarrow$$
 2AB² = 2AC² + BC²

Answer 20.



P divides AC in the ratio 2:1

So CP =
$$\frac{2}{3}$$
 AC(i)

Q divides BC in the ratio 2: 1

QC =
$$\frac{2}{3}$$
 BC (ii)

(i) In ΔACQ

Using Pythagoras Theorem we have,

$$AQ^2 = AC^2 + CQ^2$$

$$\Rightarrow AQ^2 = AC^2 + \frac{4}{9}BC^2 \qquad \text{(using (ii))}$$

$$\Rightarrow$$
 9AQ² = 9AC² + 4BC²(iii)

(ii) Applying Pythagoras theorem in right triangle BCP, we have

$$BP^2 = BC^2 + CP^2$$

$$\Rightarrow BP^2 = BC^2 + \frac{4}{9} AC^2 \quad \text{(Using (i))}$$

$$\Rightarrow$$
 9BP²=9BC²+4AC²

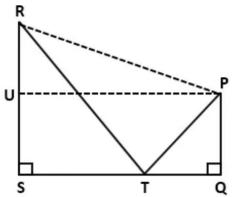
Adding (iii) and (iv), we get

$$9(AQ^2+BP^2)=13(BC^2+AC^2)$$

$$\Rightarrow$$
 9 (AQ²+BP²)= 13 AB²

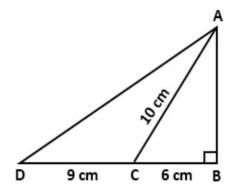
Answer 21.

Thus,∠RTP = 90°



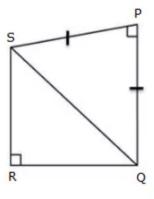
PQ =
$$\frac{RS}{3}$$
 = 8 cm
⇒ PQ = 8 cm and RS = 3 x 8 = 24 cm
3ST = 4QT = 48 cm
⇒ ST = $\frac{48}{3}$ = 16 cm and QT = $\frac{48}{4}$ = 12 cm
In Δ PTQ,
PT² = PQ² + QT² = 8² + 12² = 64 + 144 = 208
In Δ RTS,
RT² = RS² + ST² = 24² + 16² = 576 + 256 = 832
Now, PT² + RT² = 208 + 832 = 1040(i)
Draw PU ⊥ RS and Join PR.
PU = SQ = ST + TQ = 16 + 12 = 28 cm
RU = RS - US = RS - PQ = 24 - 8 = 16 cm
In Δ RUP,
PR² = RU² + PU² = 16² + 28² = 256 + 784 = 1040(ii)
From (i) and (ii), we get
PT² + RT² = PR²

Answer 22.



In
$$\triangle ABC$$
, $\angle B = 90^{\circ}$
 $\therefore AC^2 = AB^2 + BC^2$ (Pythagoras Theorem)
 $\Rightarrow 10^2 = AB^2 + 6^2$
 $\Rightarrow AB^2 = 10^2 - 6^2 = 100 - 36 = 64$
Now, BD = BC + CD = 6 + 9 = 15 cm
 $\Rightarrow BD^2 = 225$
In $\triangle ABD$, $\angle B = 90^{\circ}$
 $\therefore AD^2 = AB^2 + BD^2$
 $\Rightarrow AD^2 = 64 + 225 = 289$
 $\Rightarrow AD = 17$ cm

Answer 23.



In
$$\triangle$$
SRQ, \angle R = 90°

$$\therefore QS^2 = RS^2 + QR^2 \qquad (Pythagoras Theorem)$$

$$= 20^2 + 21^2$$

$$= 400 + 441$$

$$= 841$$
Now, in \triangle QSP, \angle P = 90°

$$\therefore QS^2 = PQ^2 + PS^2 \qquad (Pythagoras Theorem)$$

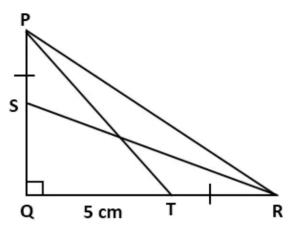
$$\Rightarrow QS^2 = PQ^2 + PQ^2 \qquad (Given PQ = PS)$$

$$\Rightarrow QS^2 = 2PQ^2$$

$$\Rightarrow PQ^2 = \frac{QS^2}{2} = \frac{841}{2} = 420.5$$

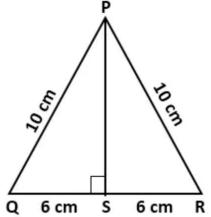
$$\Rightarrow PQ = 20.50 \text{ cm}$$

Answer 24.



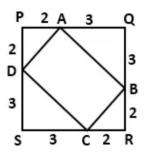
```
In ΔPQT, ∠Q = 90°
\therefore PT^2 = PQ^2 + QT^2 ....(By Pythagoras Theorem)
\Rightarrow PQ<sup>2</sup> = PT<sup>2</sup> - QT<sup>2</sup> = 13<sup>2</sup> - 5<sup>2</sup> = 169 - 25 = 144
⇒PQ = 12 cm
Now, PS = TR = a(say)
In ∆SQR, ∠Q = 90°
: SR^2 = QS^2 + QR^2 ....(By Pythagoras Theorem)
\Rightarrow SR<sup>2</sup> = (PQ - PS)<sup>2</sup> + (QT + TR)<sup>2</sup>
\Rightarrow SR<sup>2</sup> = (PQ - PS)<sup>2</sup> + (QT + PS)<sup>2</sup> ....(Since PS = TR)
\Rightarrow SR<sup>2</sup> = PQ<sup>2</sup> - 2×PQ×PS + PS<sup>2</sup> + QT<sup>2</sup> + 2×QT×PS + PS<sup>2</sup>
\Rightarrow 13^2 = 12^2 - 2 \times 12 \times a + a^2 + 5^2 + 2 \times 5 \times a + a^2
\Rightarrow 169 = 144 - 24a + a<sup>2</sup> + 25 + 10a + a<sup>2</sup>
\Rightarrow 169 = 169 - 14a + 2a<sup>2</sup>
\Rightarrow 2a<sup>2</sup> = 14a
\Rightarrow a = 7
Hence, PS = 7 cm
```

Answer 25.



Since, PQR is an isosceles triangle and PS \perp QR, therefore it divides QR into two equal parts. In \triangle PSQ, \angle S = 90° $\therefore PQ^2 = PS^2 + QS^2 \qquad (By Pythagoras Theorem)$ $\Rightarrow PS^2 = PQ^2 - QS^2 = 10^2 - 6^2 = 100 - 36 = 64$ $\Rightarrow PS = 8 \text{ cm}$

Answer 26.



In $\triangle APD$, $\angle P = 90^{\circ}$ $\therefore AD^2 = AP^2 + PD^2 = 2^2 + 2^2 = 4 + 4 = 8$ $\Rightarrow AD = 2\sqrt{2}$ cm Similarly, we can prove that in $\triangle BRC$, $BC = 2\sqrt{2}$ cm $\therefore AD = BC$ (i) In $\triangle AQB$, $\angle Q = 90^{\circ}$ $\therefore AB^2 = AQ^2 + BQ^2 = 3^2 + 3^2 = 9 + 9 = 18$ $\Rightarrow AB = 3\sqrt{2}$ cm Similarly, we can prove that in $\triangle CSD$, $CD = 3\sqrt{2}$ cm $\therefore AB = CD$ (ii) Again, in \triangle APD, AP = PD \Rightarrow \angle PAD = \angle PDA = 45° Also, in \triangle AQB, AQ = BQ \Rightarrow \angle QAB = \angle QBA = 45° Now, \angle PAD + \angle DAB + \angle QAB = 180° \Rightarrow 45° + \angle DAB + 45° = 180° \Rightarrow \angle DAB = 90° Similarly, we can prove that \angle ABC, \angle BC

Similarly, we can prove that ∠ABC, ∠BCD and ∠ADC are 90° each. Thus, ABCD is a rectangle as opposite sides are equal and each angle is 90°.

Now,

Area of a rectangle ABCD = AD x AB =
$$2\sqrt{2}$$
 x $3\sqrt{2}$ = 12 cm²
Perimeter of a rectangle ABCD = AB + BC + CD + AD
= $2\sqrt{2}$ + $3\sqrt{2}$ + $2\sqrt{2}$ + $3\sqrt{2}$
= $10\sqrt{2}$ cm