Chapter 21. Areas Theorems on Parallelograms # Ex 21.1 ## Answer 1. $$ar(\Delta APB) = \frac{1}{2} x ar(parallelogram ABCD)$$ (The area of a triangle is half that of a parallelogram on the same base and between the same parallels) $$ar(\Delta APB) = \frac{1}{2} \times 60 \text{ cm}^2$$ $$ar(\Delta APB) = 30 cm^2$$ ## Answer 2. Since PQRS is a rectangle, therefore PQ = SR. $$SR = 12 cm$$ $$PS = 8 cm$$ $$ar(\Delta PRS) = \frac{1}{2} \times base \times height$$ $$ar(\Delta PRS) = \frac{1}{2} \times SR \times PS$$ $$ar(\Delta PRS) = \frac{1}{2} \times 12 \times 8$$ $$ar(\Delta PRS) = 48 cm^2$$ #### Answer 3. (i) $$ar(\Delta QTS) = \frac{1}{2} x ar(parallelogram QTSR)$$ (The area of a triangle is half that of a parallelogram on the same base and between the same parallels) $$\Rightarrow$$ ar(parallelogram QTSR) = 2 x ar(\triangle QTS) (ii) $$ar(\Delta QTS) = \frac{1}{2} \times ar(parallelogram QTSR)$$ $$ar(\Delta QTS) = ar(\Delta RSQ) = 60 \text{ cm}^2$$ Now, $$ar(\Delta RSQ) = \frac{1}{2} \times ar(rectangle PQRS)$$ $$\Rightarrow$$ ar(rectangle PQRS) = 2 x ar(\triangle RSQ) $$\Rightarrow$$ ar(rectangle PQRS) = 2 x 60 cm² (iii) Since PQRS is a rectangle, Therefore RS = $$PQ \dots (i)$$ QTSR is a parallelogram, From (i) and (ii) In \triangle PSQ and \triangle QST $$QS = QS$$ $$\angle PQS = \angle SQT = 90^{\circ}$$ Therefore, $$\Delta PSQ \cong \Delta QST$$ Area of two congruent triangles is equal. Hence, $$ar(\Delta PSQ) = ar(\Delta QTS) = 60 \text{ cm}^2$$ #### Answer 7. $$ar(\Delta APD) = \frac{\sqrt{3}s^2}{4}$$ $$ar(\Delta APD) = \frac{\sqrt{3} \times 8^2}{4}$$ $$ar(\Delta APD) = \frac{\sqrt{3} \times 64}{4}$$ $$ar(\Delta APD) = \sqrt{3} \times 16 = 16\sqrt{3}cm^2$$ $$ar(\Delta APD) = \frac{1}{2} \times ar(parallelogram ABCD)$$ (The area of a triangle is half that of a parallelogram on the same base and between the same parallels) - \Rightarrow ar(parallelogram ABCD) = 2 x ar(\triangle APD) - \Rightarrow ar(parallelogram ABCD) = 2 x 16 $\sqrt{3}$ cm² - \Rightarrow ar(parallelogram ABCD) = $32\sqrt{3}$ cm² ## Answer 8. Area of a rectangle and area of a parallelogram on the same base is equal. Here, For rectangle PQMN, base = PQ For parallelogram PQRS, base = PQ Therefore, Area of rectangle PQMN = Area of parallelogram PQRS Area of rectangle $PQMN = 84 \text{ cm}^2$ (ii) $$ar(\Delta PQS) = \frac{1}{2} \times ar(parallelogram PQRS)$$ $$ar(\Delta PQS) = \frac{1}{2} \times 84 \text{ cm}^2$$ $$ar(\Delta PQS) = 42 cm^2$$ (iii) $$ar(\Delta PQN) = \frac{1}{2} \times ar(rectangle PQMN)$$ $$ar(\Delta PQN) = \frac{1}{2} \times 84 \text{ cm}^2$$ $$ar(\Delta PQN) = 42 cm^2$$ #### Answer 9. In quadrilateral PQST, $ar(\Delta PQS) = \frac{1}{2} \times ar(quadrilateral PQST)$ $ar(quadrilateral PQST) = 2ar(\Delta PQS) \dots (i)$ $In \ \Delta PSR,$ $ar(\Delta PSR) = ar(\Delta PQS) + ar(\Delta QSR)$ $but \ ar(\Delta PQS) = ar(\Delta QSR)$ (since QS is median as QS||TP)) $ar(\Delta PSR) = 2ar(\Delta PQS) \dots (ii)$ From (i) and (ii) ## Answer 14. In parallelogram ABCD, $ar(quadrilateral PQST) = ar(\Delta PSR)$ $$ar(\Delta ABC) = \frac{1}{2} \times ar(parallelogram ABCD)$$ $ar(parallelogram ABCD) = ar(\Delta ACE)$ (The area of a triangle is half that of a parallelogram on the same base and between the same parallels) ``` ar(parallelogram ABCD) = 2ar(\Delta ABC)(i) In \Delta ACE, ar(\Delta ACE) = ar(\Delta ABC) + ar(\Delta BCE) but ar(\Delta ABC) = ar(\Delta BCE) \qquad (since BC is median) ar(\Delta ACE) = 2ar(\Delta ABC) \qquad(ii) From (i) and (ii) ``` #### Answer 16. Draw AL perpendicular to BC. Since AD is median of ΔABC. Therefore, D is the mid-point of BC. $$\Rightarrow$$ BD = DC $$\Rightarrow$$ BD x AL = DC x AL (multiplying by AL) $$\Rightarrow \frac{1}{2}$$ (BD x AL) = $\frac{1}{2}$ (DC x AL) $$\Rightarrow$$ ar(\triangle ABD) = ar(\triangle ADC) ## Answer 17. AD is the median of \triangle ABC. So, it will divide \triangle ABC into two triangles of equal areas. Therefore, Area (\triangle ABD) = area (\triangle ACD)... (1) Now PD is the median of ΔPBC. Therefore, Area ($\triangle PBD$) = area ($\triangle PCD$)... (2) Subtract equation (2) from equation (1), we have Area (\triangle ABD) – area (\triangle PBD) = Area (\triangle ACD) – Area (\triangle PCD) Area ($\triangle ABP$) = area ($\triangle ACP$) #### Answer 19. The diagonals of a parallelogram bisect each other. Therefore, O is the mid-point of AC and BD. BO is the median in Δ ABC. Therefore, it will divide it into two triangles of equal areas. $$\therefore$$ ar($\triangle AOB$) = ar($\triangle BOC$).....(i) In ABCD, CO is the median. $$\therefore$$ ar(\triangle BOC) = ar(\triangle COD).....(ii) Similarly, $$ar(\Delta COD) = ar(\Delta AOD).....(iii)$$ From (i), (ii) and (iii) $$ar(\Delta AOB) = ar(\Delta BOC) = ar(\Delta COD) = ar(\Delta AOD)$$ Hence, diagonals of a parallelogram divide it into four triangles of equal areas. #### Answer 20. In AABD, $$BO = OD$$ \Rightarrow 0 is the mid-point of BD ⇒AO is a median. $$\Rightarrow$$ ar(\triangle AOB) = ar(\triangle AOD)(i) In ΔCBD, O is the mid-point of BD ⇒CO is a median. $$\Rightarrow$$ ar(\triangle COB) = ar(\triangle COD)(ii) Adding (i) and (ii) $$ar(\Delta AOB) + ar(\Delta COB) = ar(\Delta AOD) + ar(\Delta COD)$$ Therefore, $ar(\Delta ABC) = ar(\Delta ADC)$ ## Answer 21. Since the diagonals of a rhombus intersect at right angles, Therefore, OB \perp AC and OD \perp AC Now, ar(rhombus ABCD) = ar($$\triangle$$ ABC) + ar(\triangle ADC) = $\frac{1}{2}$ (AC×BO) + $\frac{1}{2}$ (AC×DO) = $\frac{1}{2}$ {AC×(BO+DO)} = $\frac{1}{2}$ (AC×BD) Therefore, the area of a rhombus is equal to half the rectangle contained by its diagonals. ## Answer 22. Let us draw a line segment KL, passing through point O and parallel to line segment PQ. In parallelogram PQRS, PQRS is a parallelogram. $$\Rightarrow$$ PK || QL ... (2) From equations (1) and (2), we obtain PQ | KL and PK | QL Therefore, quadrilateral PQLK is a parallelogram. It can be observed that Δ POQ and parallelogram PQLK are lying on the same base PQ and between the same parallel lines PK and QL. $$\therefore$$ Area (ΔPOQ) = $\frac{1}{2}$ Area (parallelogram PQLK) ... (3) Similarly, for AROS and parallelogram KLRS, Area ($$\Delta ROS$$) = $\frac{1}{2}$ Area (parallelogram KLRS) ... (4) Adding equations (3) and (4), we obtain Area ($$\triangle POQ$$) + Area ($\triangle ROS$) = $\frac{1}{2}$ Area (parallelogram PQLK) + $\frac{1}{2}$ Area (parallelogram KLRS) Area ($$\triangle POQ$$) + Area ($\triangle ROS$) = $\frac{1}{2}$ Area (PQRS)(5) Let us draw a line segment MN, passing through point OP and parallel to line segment PS. In parallelogram PQRS, PQRS is a parallelogram. : PQ | RS (Opposite sides of a parallelogram) From equations (6) and (7), we obtain MN || PS and PN || SN Therefore, quadrilateral PNMS is a parallelogram. It can be observed that \triangle POS and parallelogram PNMS are lying on the same base PS and between the same parallel lines PS and MN. ∴ Area ($$\triangle$$ SOP) = $\frac{1}{2}$ Area (PNMS)... (8) Similarly, for AQOR and parallelogram MNQR, Area ($$\Delta QOR$$) = $\frac{1}{2}$ Area (MNQR) ... (9) Adding equations (8) and (9), we obtain Area ($$\triangle$$ SOP) + Area (\triangle QOR) = $\frac{1}{2}$ Area (PNMS) + $\frac{1}{2}$ Area (MNQR) Area ($$\triangle$$ SOP) + Area (\triangle QOR) = $\frac{1}{2}$ Area (PQRS)(10) On comparing equations (5) and (10), we obtain Area ($$\triangle$$ POQ) + Area (\triangle ROS) = Area (\triangle SOP) + Area (\triangle QOR) = ## Answer 23. Join AC. Suppose AC and BD intersect at O. Draw AL and CM perpendicular to BD. $$ar(\Delta ABD) = ar(\Delta BDC)$$ Thus \triangle ABD and \triangle ABC are on the same base AB and have equal area. Therefore, their corresponding altitudes are equal i.e. AL = CM. Now, in \triangle ALO and \triangle CMO, $$\angle 1 = \angle 2$$ (vertically opposite angles) $$\angle ALO = \angle CMO$$ (right angles) $$AL = CM$$ Therefore, $\triangle ALO \cong \triangle CMO$ (AAS axiom) $$\Rightarrow$$ AO = OC ⇒BD bisects AC #### Answer 26. Join PS. Suppose PS and QR intersect at O. Draw PM and SN perpendicular to QR. $$ar(\Delta PQR) = ar(\Delta SQR)$$ Thus \triangle PQR and \triangle SQR are on the same base QR and have equal area. Therefore, their corresponding altitudes are equal i.e. PM = SN. Now, in $\triangle PMO$ and $\triangle SNO$, $\angle 1 = \angle 2$ (vertically opposite angles) $\angle PMO = \angle SNO$ (right angles) PM = SN Therefore, $\triangle PMO \cong \triangle SNO$ (AAS axiom) ⇒P0 = 0S ⇒QR bisects PS #### Answer 27. The median of a triangle divides it into two triangles of equal areas. In ABC, AD is the median $$\Rightarrow ar(\triangle ABD) = ar(\triangle ACD)$$(i) In ∆GBC, GD is the median $$\Rightarrow ar(\Delta GBD) = ar(\Delta GCD)$$(ii) Subtracting (ii) from (i), $$ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$$ $$\Rightarrow$$ ar(\triangle AGB) = ar(\triangle AGC)(iii) Subtracting (ii) from (i), $$ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$$ $$\Rightarrow$$ ar(\triangle AGB) = ar(\triangle AGC)(iii) Similarly, $$ar(\Delta AGB) = ar(\Delta BGC)$$(iv) From (iii) and (iv), $$ar(\Delta AGB) = ar(\Delta BGC) = ar(\Delta AGC)$$(v) But ar($$\triangle$$ AGB) + ar(\triangle BGC) + ar(\triangle AGC) = ar(\triangle ABC) Therefore, $3 \operatorname{ar}(\Delta \operatorname{AGB}) = \operatorname{ar}(\Delta \operatorname{ABC})$ $$\Rightarrow$$ ar(\triangle AGB) = $\frac{1}{3}$ ar(\triangle ABC) Hence, $$ar(\Delta AGB) = ar(\Delta AGC) = ar(\Delta BGC) = \frac{1}{3}ar(\Delta ABC)$$. # Answer 28. Since P and R are mid-points of AB and AC respectively. Therefore, PR||BC and PR = $$\frac{1}{2}$$ BC(i) Also Q is mid-point of BC, $$\Rightarrow$$ QC = $\frac{1}{2}$ BC(ii) From (i) and (ii) PR||BC and PR = QC $$\Rightarrow$$ PR||QC and PR = QC(iii) Similarly Q and R are mid-points of BC and AC respectively Therefore, QR||BP and QR = BP(iv) Hence, BQRP is a parallelogram. ⇒PQ is a diagonal of ||gm BQRP $ar(\Delta PQR) = ar(\Delta BQP)$(v) (diagonal of a ||gm divides it into two triangles of equal areas) Similarly QCRP and QRAP are ||gm| and $ar(\Delta PQR) = ar(\Delta QCR) = ar(\Delta APR)$(vi) From (v) and (vi) $ar(\Delta PQR) = ar(\Delta BQP) = ar(\Delta QCR) = ar(\Delta APR)$ Now, $ar(\Delta ABC) = ar(\Delta PQR) + ar(\Delta BQP) + ar(\Delta QCR) + ar(\Delta APR)$ $\Rightarrow ar(\Delta ABC) = ar(\Delta PQR) + ar(\Delta PQR) + ar(\Delta PQR) + ar(\Delta PQR)$ $\Rightarrow ar(\Delta ABC) = 4ar(\Delta PQR)$ $$\Rightarrow$$ ar(\triangle PQR) = $\frac{1}{4}$ ar(\triangle ABC)(vii) $ar(||gmBQRP) = ar(\Delta PQR) + ar(\Delta BQP)$ $$\Rightarrow$$ ar(||gmBQRP) = ar(\triangle PQR) + ar(\triangle PQR) (from (v)) $$\Rightarrow$$ ar(||gm BQRP) = 2ar(\triangle PQR) $$\Rightarrow \quad \text{ar}(||\text{gm BQRP}) = 2 \times \frac{1}{4} \text{ ar}(\Delta ABC) \qquad (\text{from (vii)})$$ $$\Rightarrow$$ ar(||gm BQRP) = $\frac{1}{2}$ ar(\triangle ABC) ## Answer 31. Area ($$\triangle PQR$$) = area ($\triangle PQS$) + area ($\triangle PSR$)....(i) Since PS is the median of Δ PQR and median divides a triangle into two triangles of equal area. Therefore, area ($$\triangle PQS$$) = area ($\triangle PSR$)(ii) Substituting in (i) Area ($$\triangle PQR$$) = area ($\triangle PSR$) + area ($\triangle PSR$) Area ($$\triangle PQR$$) = 2area ($\triangle PSR$)(iii) Area ($$\triangle PSR$$) = area ($\triangle PST$) + area ($\triangle PTR$)(iv) Since PT is the median of Δ PSR and median divides a triangle into two triangles of equal area. Therefore, area ($$\Delta PST$$) = area (ΔPTR)(v) Substituting in (iv) Area ($$\Delta$$ PSR) = 2area (Δ PTR)(vi) Substituting in (iii) Area ($$\triangle PQR$$) = 2 x 2area ($\triangle PTR$) Area ($$\Delta$$ PQR) = 4area (Δ PTR)(vii) Area ($$\Delta$$ PTR) = area (Δ PMR) + area (Δ MTR)(viii) Since MR is the median of Δ PTR and median divides a triangle into two triangles of equal area. Therefore, area ($$\triangle PMR$$) = area ($\triangle MTR$)(ix) Substituting in (viii) Area ($$\Delta$$ PTR) = 2area (Δ PMR)(x) Substituting in (vii) Area ($$\Delta$$ PQR) = 4 x 2area (Δ PMR) Area ($$\triangle PQR$$) = 8 x area ($\triangle PMR$) area ($$\triangle PMR$$) = $\frac{1}{8}$ area ($\triangle PQR$) # Answer 32. Since the diagonals of a parallelogram divide it into four triangles of equal area Therefore, area of $\triangle AOD$ = area $\triangle BOC$ = area $\triangle ABO$ = area $\triangle CDO$. $$\Rightarrow$$ area ΔBOC = $\frac{1}{4}$ area (||gm ABCD)(i) In | | gm ABCD, BD is the diagonal Therefore, area ($\triangle ABD$) = area ($\triangle BCD$) $$\Rightarrow$$ area (ΔBCD) = $\frac{1}{2}$ area (||gm ABCD).....(ii) In ||gm BPCD, BC is the diagonal Therefore, area ($\triangle BCD$) = area ($\triangle BPC$)(iii) From (iii) and (ii) area ($$\triangle BPC$$) = $\frac{1}{2}$ area (||gm ABCD)(iv) adding (i) and (iv) area ($$\Delta$$ BPC) + area Δ BOC = $\frac{1}{2}$ area (||gm ABCD) + $\frac{1}{4}$ area (||gm ABCD) Area of OBPC = $\frac{3}{4}$ area of ABCD #### Answer 33. Join MN. Since the line segment joining the mid-points of two sides of a triangle is parallel to the third side; so, MN||QR Clearly, ΔQMN and ΔRNM are on the same base MN and between the same parallel lines. Therefore, area (ΔQMN) = area (ΔRNM) $$\Rightarrow$$ Area (\triangle QMN) - area (\triangle ONM) = area (\triangle RNM) - area (\triangle ONM) $$\Rightarrow$$ area (ΔQON) = area (ΔROM)(i) We know that a median of a triangle divides it into two triangles of equal areas. Therefore, area (ΔQMR) = area (ΔPQM) ``` \Rightarrowarea (\triangleROQ) + area(\triangleROM) = area (quad. PMON) + area (\triangleQON) ``` $$\Rightarrow$$ area (\triangle ROQ) + area(\triangle ROM) = area (quad. PMON) + area (\triangle ROM) (from (i)) ⇒area (∆ROQ) = area (quad. PMON) ## Answer 37. Since the diagonals of a parallelogram bisect each other at the point of intersection. Therefore, OB = OD and OA = OC In ΔABC , OB is the median and median divides triangle into two triangles of equal areas Therefore, area ($$\triangle BOC$$) = area ($\triangle ABO$)(i) In $\Delta \text{ADC},\, \text{OD}$ is the median and median divides triangle into two triangles of equal areas Therefore, area ($$\triangle AOD$$) = area ($\triangle CDO$)(ii) Adding (i) and (ii) area ($\triangle AOD$) + area ($\triangle BOC$) = area ($\triangle ABO$) + area ($\triangle CDO$)